Skip to main content
Immunology logoLink to Immunology
. 1992 Jan;75(1):53–58.

Phenotype of human T cells expressing CD31, a molecule of the immunoglobulin supergene family.

H Stockinger 1, W Schreiber 1, O Majdic 1, W Holter 1, D Maurer 1, W Knapp 1
PMCID: PMC1384802  PMID: 1537603

Abstract

The CD31 molecule is a leucocyte-surface glycoprotein of 130 kDa with homology to the immunoglobulin gene superfamily. In this study we report on the expression of CD31 on human T cells and demonstrate that it subdivides peripheral blood T lymphocytes into two novel subsets. CD31 is expressed by 38% of CD3+ lymphocytes. About 85% of CD31+ T cells display the CD45RA phenotype, 35% the CD45RO phenotype, 24% the CD4 phenotype and 72% the CD8 phenotype. There is also a correlation between CD31 expression and CD45RA expression in cord blood T cells; 89% of CD3+ cord blood cells express CD31, and most of them have the CD45RA phenotype. A discrepancy was found with thymocytes, which are positive for CD31 but negative for CD45RA. Stimulation of human T cells leads to down-regulation of CD45RA, while CD31 continues to be expressed. In functional studies, CD31 antibody binding to T lymphocytes does not lead to mobilization of intracellular calcium, proliferation or modulation of T-cell proliferation.

Full text

PDF
56

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Salmon M., Janossy G. The synergy between naive and memory T cells during activation. Immunol Today. 1991 Jun;12(6):184–188. doi: 10.1016/0167-5699(91)90050-4. [DOI] [PubMed] [Google Scholar]
  2. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  3. Goyert S. M., Ferrero E. M., Seremetis S. V., Winchester R. J., Silver J., Mattison A. C. Biochemistry and expression of myelomonocytic antigens. J Immunol. 1986 Dec 15;137(12):3909–3914. [PubMed] [Google Scholar]
  4. Holter W., Majdic O., Stockinger H., Liszka K., Fischer G., Knapp W. Analysis of CD3-antibody-mediated inhibition of T-cell activation. Cell Immunol. 1986 Jun;100(1):140–148. doi: 10.1016/0008-8749(86)90014-6. [DOI] [PubMed] [Google Scholar]
  5. Muller W. A., Ratti C. M., McDonnell S. L., Cohn Z. A. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med. 1989 Aug 1;170(2):399–414. doi: 10.1084/jem.170.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Newman P. J., Berndt M. C., Gorski J., White G. C., 2nd, Lyman S., Paddock C., Muller W. A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990 Mar 9;247(4947):1219–1222. doi: 10.1126/science.1690453. [DOI] [PubMed] [Google Scholar]
  7. Novel G., Novel M. Mutants d'Escherichia coli K 12 affectés pour leur croissance sur méthyl-beta-D-glucuronide: localisation of gène de structure de la beta-D-glucuronidase (uid A. Mol Gen Genet. 1973;120(4):319–335. [PubMed] [Google Scholar]
  8. Ohto H., Maeda H., Shibata Y., Chen R. F., Ozaki Y., Higashihara M., Takeuchi A., Tohyama H. A novel leukocyte differentiation antigen: two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets, and activated lymphoblasts. Blood. 1985 Oct;66(4):873–881. [PubMed] [Google Scholar]
  9. Rabinovitch P. S., June C. H., Grossmann A., Ledbetter J. A. Heterogeneity among T cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. Simultaneous use of indo-1 and immunofluorescence with flow cytometry. J Immunol. 1986 Aug 1;137(3):952–961. [PubMed] [Google Scholar]
  10. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  11. Simmons D. L., Walker C., Power C., Pigott R. Molecular cloning of CD31, a putative intercellular adhesion molecule closely related to carcinoembryonic antigen. J Exp Med. 1990 Jun 1;171(6):2147–2152. doi: 10.1084/jem.171.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stockinger H., Gadd S. J., Eher R., Majdic O., Schreiber W., Kasinrerk W., Strass B., Schnabl E., Knapp W. Molecular characterization and functional analysis of the leukocyte surface protein CD31. J Immunol. 1990 Dec 1;145(11):3889–3897. [PubMed] [Google Scholar]
  13. Takeuchi A., Shimizu A., Ohto H., Hashimoto T. Inhibition of neutrophil and monocyte functions by the monoclonal antibody TM2. Clin Immunol Immunopathol. 1988 Dec;49(3):439–449. doi: 10.1016/0090-1229(88)90131-6. [DOI] [PubMed] [Google Scholar]
  14. Wallace D. L., Beverley P. C. Phenotypic changes associated with activation of CD45RA+ and CD45RO+ T cells. Immunology. 1990 Mar;69(3):460–467. [PMC free article] [PubMed] [Google Scholar]
  15. Zocchi M. R., Poggi A., Mariani S., Gianazza E., Rugarli C. Identification of a new surface molecule expressed by human LGL and LAK cells production of a specific monoclonal antibody and comparison with other NK/LAK markers. Cell Immunol. 1989 Nov;124(1):144–157. doi: 10.1016/0008-8749(89)90118-4. [DOI] [PubMed] [Google Scholar]
  16. van Mourik J. A., Leeksma O. C., Reinders J. H., de Groot P. G., Zandbergen-Spaargaren J. Vascular endothelial cells synthesize a plasma membrane protein indistinguishable from the platelet membrane glycoprotein IIa. J Biol Chem. 1985 Sep 15;260(20):11300–11306. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES