Abstract
Antipyrine half-life has been determined from measurements of antipyrine concentrations in spontaneously voided urine specimens in eleven subjects, studied on a total of forty-seven different occasions while receiving no drugs, interferon or ketoconazole. Plasma and saliva half-lives show good intrasubject correlation. Plasma and urine half-lives show good intrasubject correlation provided total urine output is at least 1.1 l day-1. The range of intrasubject correlation coefficients for plasma and urinary half-lives was 0.76 to 0.98, with a median value of 0.85. Saliva and urine half-lives show good intrasubject correlation, with the range of intrasubject correlation coefficients from 0.74 to 0.98, and with a median value of 0.75. There is a small but consistent bias towards shorter urinary half-life estimates; this averaged 0.75 h for the plasma-urine studies and 0.192 h for the saliva-urine studies. There were parallel changes in antipyrine half-life estimated from plasma and urine for one of our subjects who received multiple doses of recombinant beta-interferon and had a 150% increase in antipyrine half-life over the study period.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Danhof M., Breimer D. D. Studies on the different metabolic pathways of antipyrine in man. I. Oral administration of 250, 500 and 1000 mg to healthy volunteers. Br J Clin Pharmacol. 1979 Dec;8(6):529–537. doi: 10.1111/j.1365-2125.1979.tb01040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danhof M., Groot-van der Vis E., Breiner D. D. Assay of antipyrine and its primary metabolites in plasma, saliva and urine by high-performance liquid chromatography and some preliminary results in man. Pharmacology. 1979;18(4):210–223. doi: 10.1159/000137254. [DOI] [PubMed] [Google Scholar]
- Eichelbaum M., Bertilsson L., Säwe J. Antipyrine metabolism in relation to polymorphic oxidations of sparteine and debrisoquine. Br J Clin Pharmacol. 1983 Mar;15(3):317–321. doi: 10.1111/j.1365-2125.1983.tb01505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser H. S., Mucklow J. C., Murray S., Davies D. S. Assessment of antipyrine kinetics by measurement in saliva. Br J Clin Pharmacol. 1976 Apr;3(2):321–325. doi: 10.1111/j.1365-2125.1976.tb00610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sultatos L. G., Dvorchik B. H., Vesell E. S., Shand D. G., Branch R. A. Further observations on relationships between antipyrine half-life, clearance and volume of distribution: an appraisal of alternative kinetic parameters used to assess the elimination of antipyrine. Clin Pharmacokinet. 1980 May-Jun;5(3):263–273. doi: 10.2165/00003088-198005030-00005. [DOI] [PubMed] [Google Scholar]
- Taylor G., Blaschke T. F. Measurement of antipyrine half-life from urinary drug concentrations. Br J Clin Pharmacol. 1984 Oct;18(4):650–652. doi: 10.1111/j.1365-2125.1984.tb02524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toverud E. L., Boobis A. R., Brodie M. J., Murray S., Bennett P. N., Whitmarsh V., Davies D. S. Differential induction of antipyrine metabolism by rifampicin. Eur J Clin Pharmacol. 1981;21(2):155–160. doi: 10.1007/BF00637517. [DOI] [PubMed] [Google Scholar]
- Vesell E. S., Passananti G. T., Glenwright P. A., Dvorchik B. H. Studies on the disposition of antipyrine, aminopyrine, and phenacetin using plasma, saliva, and urine. Clin Pharmacol Ther. 1975 Sep;18(3):259–272. doi: 10.1002/cpt1975183259. [DOI] [PubMed] [Google Scholar]
- Vesell E. S., Penno M. B. Assessment of methods to identify sources of interindividual pharmacokinetic variations. Clin Pharmacokinet. 1983 Sep-Oct;8(5):378–409. doi: 10.2165/00003088-198308050-00002. [DOI] [PubMed] [Google Scholar]
- Welch R. M., DeAngelis R. L., Wingfield M., Farmer T. W. Elimination of antipyrine from saliva as a measure of metabolism in man. Clin Pharmacol Ther. 1975 Sep;18(3):249–258. doi: 10.1002/cpt1975183249. [DOI] [PubMed] [Google Scholar]
