Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3129–3135. doi: 10.1128/aem.61.8.3129-3135.1995

Kinetics of Inhibition of Methane Oxidation by Nitrate, Nitrite, and Ammonium in a Humisol

P Dunfield, R Knowles
PMCID: PMC1388563  PMID: 16535109

Abstract

The kinetics of inhibition of CH(inf4) oxidation by NH(inf4)(sup+), NO(inf2)(sup-), and NO(inf3)(sup-) in a humisol was investigated. Soil slurries exhibited nearly standard Michaelis-Menten kinetics, with half-saturation constant [K(infm(app))] values for CH(inf4) of 50 to 200 parts per million of volume (ppmv) and V(infmax) values of 1.1 to 2.5 nmol of CH(inf4) g of dry soil(sup-1) h(sup-1). With one soil sample, NH(inf4)(sup+) acted as a simple competitive inhibitor, with an estimated K(infi) of 8 (mu)M NH(inf4)(sup+) (18 nM NH(inf3)). With another soil sample, the response to NH(inf4)(sup+) addition was more complex and the inhibitory effect of NH(inf4)(sup+) was greater than predicted by a simple competitive model at low CH(inf4) concentrations (<50 ppmv). This was probably due to NO(inf2)(sup-) produced through NH(inf4)(sup+) oxidation. Added NO(inf2)(sup-) was inherently more inhibitory of CH(inf4) oxidation at low CH(inf4) concentrations, and more NO(inf2)(sup-) was produced as the CH(inf4)-to-NH(inf4)(sup+) ratio decreased and the competitive balance shifted. NaNO(inf3) was a noncompetitive inhibitor of CH(inf4) oxidation, but inhibition was evident only at >10 mM concentrations, which also altered soil pHs. Similar concentrations of NaCl were also inhibitory of CH(inf4) oxidation, so there may be no special inhibitory mechanism of nitrate per se.

Full Text

The Full Text of this article is available as a PDF (304.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsen A. P., King G. M. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol. 1993 Feb;59(2):485–490. doi: 10.1128/aem.59.2.485-490.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bédard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989 Mar;53(1):68–84. doi: 10.1128/mr.53.1.68-84.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
  4. Jollie D. R., Lipscomb J. D. Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors. J Biol Chem. 1991 Nov 15;266(32):21853–21863. [PubMed] [Google Scholar]
  5. King G. M., Schnell S. Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at Low Methane Concentrations. Appl Environ Microbiol. 1994 Oct;60(10):3508–3513. doi: 10.1128/aem.60.10.3508-3513.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schnell S., King G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol. 1994 Oct;60(10):3514–3521. doi: 10.1128/aem.60.10.3514-3521.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES