Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Mar;62(3):1029–1035. doi: 10.1128/aem.62.3.1029-1035.1996

A Combined Model for Growth and Subsequent Thermal Inactivation of Brochothrix thermosphacta

J Baranyi, A Jones, C Walker, A Kaloti, T P Robinson, B M Mackey
PMCID: PMC1388811  PMID: 16535254

Abstract

A mathematical technique for integrating growth and thermal inactivation models of microorganisms into a smooth combined model that can be applied to circumstances under which the temperature gradually rises from growth to inactivation regions is described. For the death part of the model, a correction term is introduced to allow for additional resistance of the cells gained during slow heating. The model was validated with Brochothrix thermosphacta heated in broth at rising temperatures.

Full Text

The Full Text of this article is available as a PDF (254.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baranyi J., Roberts T. A. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994 Nov;23(3-4):277–294. doi: 10.1016/0168-1605(94)90157-0. [DOI] [PubMed] [Google Scholar]
  2. Baranyi J., Robinson T. P., Kaloti A., Mackey B. M. Predicting growth of Brochothrix thermosphacta at changing temperature. Int J Food Microbiol. 1995 Sep;27(1):61–75. doi: 10.1016/0168-1605(94)00154-x. [DOI] [PubMed] [Google Scholar]
  3. Cerf O. Tailing of survival curves of bacterial spores. J Appl Bacteriol. 1977 Feb;42(1):1–19. doi: 10.1111/j.1365-2672.1977.tb00665.x. [DOI] [PubMed] [Google Scholar]
  4. Farber J. M., Brown B. E. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl Environ Microbiol. 1990 Jun;56(6):1584–1587. doi: 10.1128/aem.56.6.1584-1587.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hills B. P., Wright K. M. A new model for bacterial growth in heterogeneous systems. J Theor Biol. 1994 May 7;168(1):31–41. doi: 10.1006/jtbi.1994.1085. [DOI] [PubMed] [Google Scholar]
  6. King A. D., Jr, Bayne H. G., Alderton G. Nonlogarithmic death rate calculations for Byssochlamys fulva and other microorganisms. Appl Environ Microbiol. 1979 Mar;37(3):596–600. doi: 10.1128/aem.37.3.596-600.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mackey B. M., Derrick C. M. Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986 Nov;61(5):389–393. doi: 10.1111/j.1365-2672.1986.tb04301.x. [DOI] [PubMed] [Google Scholar]
  8. McClure P. J., Baranyi J., Boogard E., Kelly T. M., Roberts T. A. A predictive model for the combined effect of pH, sodium chloride and storage temperature on the growth of Brochothrix thermosphacta. Int J Food Microbiol. 1993 Aug;19(3):161–178. doi: 10.1016/0168-1605(93)90074-q. [DOI] [PubMed] [Google Scholar]
  9. Mitchell G. A., Brocklehurst T. F., Parker R., Smith A. C. The effect of transient temperatures on the growth of Salmonella typhimurium LT2. I: Cycling within the growth region. J Appl Bacteriol. 1994 Jul;77(1):113–119. doi: 10.1111/j.1365-2672.1994.tb03052.x. [DOI] [PubMed] [Google Scholar]
  10. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol. 1983 Jun;154(3):1222–1226. doi: 10.1128/jb.154.3.1222-1226.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stephens P. J., Cole M. B., Jones M. V. Effect of heating rate on the thermal inactivation of Listeria monocytogenes. J Appl Bacteriol. 1994 Dec;77(6):702–708. doi: 10.1111/j.1365-2672.1994.tb02822.x. [DOI] [PubMed] [Google Scholar]
  12. Sutherland J. P., Bayliss A. J., Roberts T. A. Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol. 1994 Feb;21(3):217–236. doi: 10.1016/0168-1605(94)90029-9. [DOI] [PubMed] [Google Scholar]
  13. Van Impe J. F., Nicolaï B. M., Martens T., De Baerdemaeker J., Vandewalle J. Dynamic mathematical model to predict microbial growth and inactivation during food processing. Appl Environ Microbiol. 1992 Sep;58(9):2901–2909. doi: 10.1128/aem.58.9.2901-2909.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zwietering M. H., de Wit J. C., Cuppers H. G., van 't Riet K. Modeling of bacterial growth with shifts in temperature. Appl Environ Microbiol. 1994 Jan;60(1):204–213. doi: 10.1128/aem.60.1.204-213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES