Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1670–1675. doi: 10.1128/aem.62.5.1670-1675.1996

Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Batch and Fed-Batch Cultures

P Wang, S Krawiec
PMCID: PMC1388853  PMID: 16535315

Abstract

The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batch and fed-batch modes) demonstrated that DBTO(inf2) as the sole sulfur source yielded a greater amount of product than did DBT. Specifically, 100 (mu)M DBT maximally yielded (apprx=)40 (mu)M OH-BP, while 100 (mu)M DBTO(inf2) yielded (apprx=)60 (mu)M OH-BP. Neither maintaining the pH at 6.0 nor adding an additional carbon source increased the yield of OH-BP. The presence of SO(inf4)(sup2-) in growth media repressed expression of desulfurization activity, but SO(inf4)(sup2-) added to suspensions of cells grown in DBT or DBTO(inf2) did not inhibit desulfurization activity.

Full Text

The Full Text of this article is available as a PDF (229.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gallagher J. R., Olson E. S., Stanley D. C. Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett. 1993 Feb 15;107(1):31–35. doi: 10.1016/0378-1097(93)90349-7. [DOI] [PubMed] [Google Scholar]
  2. Izumi Y., Ohshiro T., Ogino H., Hine Y., Shimao M. Selective Desulfurization of Dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol. 1994 Jan;60(1):223–226. doi: 10.1128/aem.60.1.223-226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES