Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):1040–1047. doi: 10.1128/aem.63.3.1040-1047.1997

The Sesbania Root Symbionts Sinorhizobium saheli and S. teranga bv. sesbaniae Can Form Stem Nodules on Sesbania rostrata, although They Are Less Adapted to Stem Nodulation than Azorhizobium caulinodans

C Boivin, I Ndoye, G Lortet, A Ndiaye, P De Lajudie, B Dreyfus
PMCID: PMC1389132  PMID: 16535538

Abstract

Sesbania species can establish symbiotic interactions with rhizobia from two taxonomically distant genera, including the Sesbania rostrata stem-nodulating Azorhizobium sp. and Azorhizobium caulinodans and the newly described Sinorhizobium saheli and Sinorhizobium teranga bv. sesbaniae, isolated from the roots of various Sesbania species. A collection of strains from both groups were analyzed for their symbiotic properties with different Sesbania species. S. saheli and S. teranga bv. sesbaniae strains were found to effectively stem nodulate Sesbania rostrata, showing that stem nodulation is not restricted to Azorhizobium. Sinorhizobia and azorhizobia, however, exhibited clear differences in other aspects of symbiosis. Unlike Azorhizobium, S. teranga bv. sesbaniae and S. saheli did not induce effective stem nodules on plants previously inoculated on the roots, although stem nodulation was arrested at different stages. For Sesbania rostrata root nodulation, Sinorhizobium appeared more sensitive than Azorhizobium to the presence of combined nitrogen. S. saheli and S. teranga bv. sesbaniae were effective symbionts with all Sesbania species tested, while Azorhizobium strains fixed nitrogen only in symbiosis with Sesbania rostrata. In a simple screening test, S. saheli and S. teranga bv. sesbaniae were incapable of asymbiotic nitrogenase activity. Thus, Azorhizobium can easily be distinguished from Sinorhizobium among Sesbania symbionts on the basis of symbiotic and free-living nitrogen fixation. The ability of Azorhizobium to overcome the systemic plant control appears to be a stem adaptation function. This last property, together with its host-specific symbiotic nitrogen fixation, makes Azorhizobium highly specialized for stem nodulation of the aquatic legume Sesbania rostrata.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caetano-Anollés G., Gresshoff P. M. Plant genetic control of nodulation. Annu Rev Microbiol. 1991;45:345–382. doi: 10.1146/annurev.mi.45.100191.002021. [DOI] [PubMed] [Google Scholar]
  2. Dreyfus B. L., Elmerich C., Dommergues Y. R. Free-living Rhizobium strain able to grow on n(2) as the sole nitrogen source. Appl Environ Microbiol. 1983 Feb;45(2):711–713. doi: 10.1128/aem.45.2.711-713.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elmerich C., Dreyfus B. L., Reysset G., Aubert J. P. Genetic analysis of nitrogen fixation in a tropical fast-growing Rhizobium. EMBO J. 1982;1(4):499–503. doi: 10.1002/j.1460-2075.1982.tb01197.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaminski P. A., Desnoues N., Elmerich C. The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Q beta RNA. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4663–4667. doi: 10.1073/pnas.91.11.4663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ndoye I., de Billy F., Vasse J., Dreyfus B., Truchet G. Root nodulation of Sesbania rostrata. J Bacteriol. 1994 Feb;176(4):1060–1068. doi: 10.1128/jb.176.4.1060-1068.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rana D., Krishnan H. B. A new root-nodulating symbiont of the tropical legume Sesbania, Rhizobium sp. SIN-1, is closely related to R. galegae, a species that nodulates temperate legumes. FEMS Microbiol Lett. 1995 Dec 1;134(1):19–25. doi: 10.1111/j.1574-6968.1995.tb07908.x. [DOI] [PubMed] [Google Scholar]
  7. Tsien H. C., Dreyfus B. L., Schmidt E. L. Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J Bacteriol. 1983 Nov;156(2):888–897. doi: 10.1128/jb.156.2.888-897.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Vasse J., de Billy F., Camut S., Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 1990 Aug;172(8):4295–4306. doi: 10.1128/jb.172.8.4295-4306.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES