Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1978 Dec;188(6):797–803. doi: 10.1097/00000658-197812000-00014

Muscle and plasma amino acids after injury: the role of inactivity.

J Askanazi, D H Elwyn, J M Kinney, F E Gump, C B Michelsen, F E Stinchfield, P Fürst, E Vinnars, J Bergström
PMCID: PMC1397017  PMID: 736657

Abstract

The amino acid pattern following total hip replacement is characterized by increases in muscle of the branched chain amino acids (leucine, isoleucine and valine), the aromatics (phenylalanine and tyrosine) as well as methionine. The nonessential amino acids in muscle tend to decline, glutamine having the most marked change. Plasma levels of the essential amino acids increase while the nonessentials tend to decrease. This pattern differs from that observed in other catabolic states (uremia, starvation, untreated diabetes) and is significantly different from the effects of inactivity and starvation combined. This suggests that injury can be characterized by a unique pattern of muscle and plasma amino acids.

Full text

PDF
800

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adibi S. A. Metabolism of branched-chain amino acids in altered nutrition. Metabolism. 1976 Nov;25(11):1287–1302. doi: 10.1016/s0026-0495(76)80012-1. [DOI] [PubMed] [Google Scholar]
  2. BOLTE H. D., RIECKER G., ROHL D. [Measurements of the membrane potential of single cross-striated muscles of man in situ. Normal values]. Klin Wochenschr. 1963 Apr 15;41:356–359. doi: 10.1007/BF01487862. [DOI] [PubMed] [Google Scholar]
  3. Bergström J., Fürst P., Norée L. O., Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974 Jun;36(6):693–697. doi: 10.1152/jappl.1974.36.6.693. [DOI] [PubMed] [Google Scholar]
  4. Betheil J. J., Feigelson M., Feigelson P. The differential effects of glucocorticoid on tissue and plasma amino acid levels. Biochim Biophys Acta. 1965 Jun 15;104(1):92–97. doi: 10.1016/0304-4165(65)90224-2. [DOI] [PubMed] [Google Scholar]
  5. CARLSTEN A., HALLGREN B., JAGENBUR G. R., SVANBORG A., WERKO L. Arterial concentrations of free fatty acids and free amino acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest. 1962;14:185–191. doi: 10.3109/00365516209079692. [DOI] [PubMed] [Google Scholar]
  6. CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
  7. Daws T. A., Consolazio C. F., Hilty S. L., Johnson H. L., Krzywicki H. J., Nelson R. A., Witt N. F. Evaluation of cardiopulmonary function and work performance in man during caloric restriction. J Appl Physiol. 1972 Aug;33(2):211–217. doi: 10.1152/jappl.1972.33.2.211. [DOI] [PubMed] [Google Scholar]
  8. Felig P., Marliss E., Ohman J. L., Cahill C. F., Jr Plasma amino acid levels in diabetic ketoacidosis. Diabetes. 1970 Oct;19(10):727–728. doi: 10.2337/diab.19.10.727. [DOI] [PubMed] [Google Scholar]
  9. Felig P., Owen O. E., Wahren J., Cahill G. F., Jr Amino acid metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):584–594. doi: 10.1172/JCI106017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Felig P., Wahren J. Amino acid metabolism in exercising man. J Clin Invest. 1971 Dec;50(12):2703–2714. doi: 10.1172/JCI106771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. IACOBELLIS M., MUNTWYLER E., DODGEN C. L. Free amino acid patterns of certain tissues from potassium and/or protein-deficient rats. Am J Physiol. 1956 May;185(2):275–278. doi: 10.1152/ajplegacy.1956.185.2.275. [DOI] [PubMed] [Google Scholar]
  12. KAPLAN S. A., SHIMIZU C. S. Effects of cortisol on amino acids in skeletal muscle and plasma. Endocrinology. 1963 Feb;72:267–272. doi: 10.1210/endo-72-2-267. [DOI] [PubMed] [Google Scholar]
  13. Leibholz J. M., McCall J. T., Hays V. W., Speer V. C. Potassium, protein and basic amino acid relationships in swine. J Anim Sci. 1966 Feb;25(1):37–43. doi: 10.2527/jas1966.25137x. [DOI] [PubMed] [Google Scholar]
  14. RYAN W. L., CARVER M. J. IMMEDIATED AND PROLONGED EFFECTS OF HYDROCORTISONE ON THE FREE AMINO ACIDS OF RAT SKELETAL MUSCLE. Proc Soc Exp Biol Med. 1963 Dec;114:816–819. doi: 10.3181/00379727-114-28808. [DOI] [PubMed] [Google Scholar]
  15. Vinnars E., Bergstöm J., Fürst P. Influence of the postoperative state on the intracellular free amino acids in human muscle tissue. Ann Surg. 1975 Dec;182(6):665–671. doi: 10.1097/00000658-197512000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES