Skip to main content
Journal of Psychiatry & Neuroscience: JPN logoLink to Journal of Psychiatry & Neuroscience: JPN
. 2000 Jan;25(1):14–23.

Functional activities of the amygdala: an overview.

A A Rasia-Filho 1, R G Londero 1, M Achaval 1
PMCID: PMC1407702  PMID: 10721680

Abstract

Research to date into the amygdala shows that it has an integrative role in behavioural, vegetative and endocrine activities of animals in their relation with their environment. Animal studies show that amygdala has a role in emotional response, integrating input signals and initiating activities related to them. Different nuclei seem to have different effects. A complete picture of the functional roles of the amygdala is unavailable, and it has been suggested that the amygdala is functionally and anatomically heterogeneous. Amygdaloid subnuclei appear to have a role in the modulation of fear, in memory and attention, and in some sexual and sex-related behaviour of rats. In humans, functional magnetic resonance imaging shows that the amygdala responds preferentially to emotionally charged stimuli. Bilateral amygdala damage in humans can compromise the recognition of fear in facial expressions, an important ability in social judgement. Future study of the amygdala promises to shed light on emotional disorders in humans.

Full text

PDF
14

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamec R. E. Individual differences in temporal lobe sensory processing of threatening stimuli in the cat. Physiol Behav. 1991 Mar;49(3):455–464. doi: 10.1016/0031-9384(91)90264-o. [DOI] [PubMed] [Google Scholar]
  2. Adamec R. E., Morgan H. D. The effect of kindling of different nuclei in the left and right amygdala on anxiety in the rat. Physiol Behav. 1994 Jan;55(1):1–12. doi: 10.1016/0031-9384(94)90002-7. [DOI] [PubMed] [Google Scholar]
  3. Adolphs R., Tranel D., Damasio A. R. The human amygdala in social judgment. Nature. 1998 Jun 4;393(6684):470–474. doi: 10.1038/30982. [DOI] [PubMed] [Google Scholar]
  4. Adolphs R., Tranel D., Damasio H., Damasio A. R. Fear and the human amygdala. J Neurosci. 1995 Sep;15(9):5879–5891. doi: 10.1523/JNEUROSCI.15-09-05879.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aggleton J. P. The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci. 1993 Aug;16(8):328–333. doi: 10.1016/0166-2236(93)90110-8. [DOI] [PubMed] [Google Scholar]
  6. Alkire M. T., Haier R. J., Fallon J. H., Cahill L. Hippocampal, but not amygdala, activity at encoding correlates with long-term, free recall of nonemotional information. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14506–14510. doi: 10.1073/pnas.95.24.14506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Armony J. L., Servan-Schreiber D., Cohen J. D., LeDoux J. E. An anatomically constrained neural network model of fear conditioning. Behav Neurosci. 1995 Apr;109(2):246–257. doi: 10.1037//0735-7044.109.2.246. [DOI] [PubMed] [Google Scholar]
  8. Asmus S. E., Newman S. W. Tyrosine hydroxylase neurons in the male hamster chemosensory pathway contain androgen receptors and are influenced by gonadal hormones. J Comp Neurol. 1993 May 22;331(4):445–457. doi: 10.1002/cne.903310402. [DOI] [PubMed] [Google Scholar]
  9. Bacon S. J., Headlam A. J., Gabbott P. L., Smith A. D. Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res. 1996 May 13;720(1-2):211–219. doi: 10.1016/0006-8993(96)00155-2. [DOI] [PubMed] [Google Scholar]
  10. Bennett C., Liang K. C., McGaugh J. L. Depletion of adrenal catecholamines alters the amnestic effect of amygdala stimulation. Behav Brain Res. 1985 Apr;15(2):83–91. doi: 10.1016/0166-4328(85)90055-5. [DOI] [PubMed] [Google Scholar]
  11. Blanchard D. C., Blanchard R. J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol. 1972 Nov;81(2):281–290. doi: 10.1037/h0033521. [DOI] [PubMed] [Google Scholar]
  12. Bolhuis J. J., Fitzgerald R. E., Dijk D. J., Koolhaas J. M. The corticomedial amygdala and learning in an agonistic situation in the rat. Physiol Behav. 1984 Apr;32(4):575–579. doi: 10.1016/0031-9384(84)90311-1. [DOI] [PubMed] [Google Scholar]
  13. Breiter H. C., Etcoff N. L., Whalen P. J., Kennedy W. A., Rauch S. L., Buckner R. L., Strauss M. M., Hyman S. E., Rosen B. R. Response and habituation of the human amygdala during visual processing of facial expression. Neuron. 1996 Nov;17(5):875–887. doi: 10.1016/s0896-6273(00)80219-6. [DOI] [PubMed] [Google Scholar]
  14. Bressler S. C., Baum M. J. Sex comparison of neuronal Fos immunoreactivity in the rat vomeronasal projection circuit after chemosensory stimulation. Neuroscience. 1996 Apr;71(4):1063–1072. doi: 10.1016/0306-4522(95)00493-9. [DOI] [PubMed] [Google Scholar]
  15. CHAPMAN W. P., SCHROEDER H. R., GEYER G., BRAZIER M. A., FAGER C., POPPEN J. L., SOLOMON H. C., YAKOVLEV P. I. Physiological evidence concerning importance of the amygdaloid nuclear region in the integration of circulatory function and emotion in man. Science. 1954 Dec 3;120(3127):949–950. doi: 10.1126/science.120.3127.949. [DOI] [PubMed] [Google Scholar]
  16. Cahill L., Babinsky R., Markowitsch H. J., McGaugh J. L. The amygdala and emotional memory. Nature. 1995 Sep 28;377(6547):295–296. doi: 10.1038/377295a0. [DOI] [PubMed] [Google Scholar]
  17. Cahill L., McGaugh J. L. Modulation of memory storage. Curr Opin Neurobiol. 1996 Apr;6(2):237–242. doi: 10.1016/s0959-4388(96)80078-x. [DOI] [PubMed] [Google Scholar]
  18. Canteras N. S., Simerly R. B., Swanson L. W. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol. 1995 Sep 18;360(2):213–245. doi: 10.1002/cne.903600203. [DOI] [PubMed] [Google Scholar]
  19. Cassell M. D. The amygdala: myth or monolith? Trends Neurosci. 1998 May;21(5):200–201. doi: 10.1016/s0166-2236(97)01207-1. [DOI] [PubMed] [Google Scholar]
  20. Coleman-Mesches K., McGaugh J. L. Differential effects of pretraining inactivation of the right or left amygdala on retention of inhibitory avoidance training. Behav Neurosci. 1995 Aug;109(4):642–647. doi: 10.1037//0735-7044.109.4.642. [DOI] [PubMed] [Google Scholar]
  21. Dalmaz C., Introini-Collison I. B., McGaugh J. L. Noradrenergic and cholinergic interactions in the amygdala and the modulation of memory storage. Behav Brain Res. 1993 Dec 20;58(1-2):167–174. doi: 10.1016/0166-4328(93)90101-u. [DOI] [PubMed] [Google Scholar]
  22. Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999 Jan;3(1):11–21. doi: 10.1016/s1364-6613(98)01265-0. [DOI] [PubMed] [Google Scholar]
  23. Davis M. Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry. 1998 Dec 15;44(12):1239–1247. doi: 10.1016/s0006-3223(98)00288-1. [DOI] [PubMed] [Google Scholar]
  24. Davis M., Falls W. A., Campeau S., Kim M. Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res. 1993 Dec 20;58(1-2):175–198. doi: 10.1016/0166-4328(93)90102-v. [DOI] [PubMed] [Google Scholar]
  25. Davis M., Hitchcock J. M., Bowers M. B., Berridge C. W., Melia K. R., Roth R. H. Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala. Brain Res. 1994 Nov 21;664(1-2):207–210. doi: 10.1016/0006-8993(94)91972-0. [DOI] [PubMed] [Google Scholar]
  26. Ferreira M. B., Da Silva R. C., Medina J. H., Izquierdo I. Late posttraining memory processing by entorhinal cortex: involvement of NMDA and GABAergic receptors. Pharmacol Biochem Behav. 1992 Apr;41(4):767–771. doi: 10.1016/0091-3057(92)90225-5. [DOI] [PubMed] [Google Scholar]
  27. Fiber J. M., Swann J. M. Testosterone differentially influences sex-specific pheromone-stimulated Fos expression in limbic regions of Syrian hamsters. Horm Behav. 1996 Dec;30(4):455–473. doi: 10.1006/hbeh.1996.0050. [DOI] [PubMed] [Google Scholar]
  28. Frankfurt M., Siegel R. A., Sim I., Wuttke W. Cholecystokinin and substance P concentrations in discrete areas of the rat brain: sex differences. Brain Res. 1985 Dec 9;358(1-2):53–58. doi: 10.1016/0006-8993(85)90947-3. [DOI] [PubMed] [Google Scholar]
  29. Gallagher M., Chiba A. A. The amygdala and emotion. Curr Opin Neurobiol. 1996 Apr;6(2):221–227. doi: 10.1016/s0959-4388(96)80076-6. [DOI] [PubMed] [Google Scholar]
  30. Gallagher M., Graham P. W., Holland P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci. 1990 Jun;10(6):1906–1911. doi: 10.1523/JNEUROSCI.10-06-01906.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gomez D. M., Newman S. W. Medial nucleus of the amygdala in the adult Syrian hamster: a quantitative Golgi analysis of gonadal hormonal regulation of neuronal morphology. Anat Rec. 1991 Dec;231(4):498–509. doi: 10.1002/ar.1092310412. [DOI] [PubMed] [Google Scholar]
  32. Gréco B., Edwards D. A., Michael R. P., Clancy A. N. Androgen receptor immunoreactivity and mating-induced Fos expression in forebrain and midbrain structures in the male rat. Neuroscience. 1996 Nov;75(1):161–171. doi: 10.1016/0306-4522(96)00183-2. [DOI] [PubMed] [Google Scholar]
  33. Guillamón A., Segovia S. Sex differences in the vomeronasal system. Brain Res Bull. 1997;44(4):377–382. doi: 10.1016/s0361-9230(97)00217-7. [DOI] [PubMed] [Google Scholar]
  34. Hamann S. B., Stefanacci L., Squire L. R., Adolphs R., Tranel D., Damasio H., Damasio A. Recognizing facial emotion. Nature. 1996 Feb 8;379(6565):497–497. doi: 10.1038/379497a0. [DOI] [PubMed] [Google Scholar]
  35. Hatfield T., Gallagher M. Taste-potentiated odor conditioning: impairment produced by infusion of an N-methyl-D-aspartate antagonist into basolateral amygdala. Behav Neurosci. 1995 Aug;109(4):663–668. doi: 10.1037//0735-7044.109.4.663. [DOI] [PubMed] [Google Scholar]
  36. Heimer L., Harlan R. E., Alheid G. F., Garcia M. M., de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience. 1997 Feb;76(4):957–1006. doi: 10.1016/s0306-4522(96)00405-8. [DOI] [PubMed] [Google Scholar]
  37. Hines M., Allen L. S., Gorski R. A. Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Brain Res. 1992 May 8;579(2):321–326. doi: 10.1016/0006-8993(92)90068-k. [DOI] [PubMed] [Google Scholar]
  38. Introini-Collison I. B., Castellano C., McGaugh J. L. Interaction of GABAergic and beta-noradrenergic drugs in the regulation of memory storage. Behav Neural Biol. 1994 Mar;61(2):150–155. doi: 10.1016/s0163-1047(05)80068-8. [DOI] [PubMed] [Google Scholar]
  39. Introini-Collison I. B., Dalmaz C., McGaugh J. L. Amygdala beta-noradrenergic influences on memory storage involve cholinergic activation. Neurobiol Learn Mem. 1996 Jan;65(1):57–64. doi: 10.1006/nlme.1996.0006. [DOI] [PubMed] [Google Scholar]
  40. Introini-Collison I. B., Ford L., McGaugh J. L. Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences. Neurobiol Learn Mem. 1995 Mar;63(2):200–205. doi: 10.1006/nlme.1995.1021. [DOI] [PubMed] [Google Scholar]
  41. Izquierdo I., Medina J. H. Role of the amygdala, hippocampus and entorhinal cortex in memory consolidation and expression. Braz J Med Biol Res. 1993 Jun;26(6):573–589. [PubMed] [Google Scholar]
  42. Izquierdo I., da Cunha C., Rosat R., Jerusalinsky D., Ferreira M. B., Medina J. H. Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behav Neural Biol. 1992 Jul;58(1):16–26. doi: 10.1016/0163-1047(92)90847-w. [DOI] [PubMed] [Google Scholar]
  43. Jolkkonen E., Pitkänen A. Intrinsic connections of the rat amygdaloid complex: projections originating in the central nucleus. J Comp Neurol. 1998 May 25;395(1):53–72. doi: 10.1002/(sici)1096-9861(19980525)395:1<53::aid-cne5>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  44. Kemble E. D., Blanchard D. C., Blanchard R. J., Takushi R. Taming in wild rats following medial amygdaloid lesions. Physiol Behav. 1984 Jan;32(1):131–134. doi: 10.1016/0031-9384(84)90084-2. [DOI] [PubMed] [Google Scholar]
  45. Kim J. J., Rison R. A., Fanselow M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci. 1993 Dec;107(6):1093–1098. doi: 10.1037//0735-7044.107.6.1093. [DOI] [PubMed] [Google Scholar]
  46. Knuepfer M. M., Eismann A., Schütze I., Stumpf H., Stock G. Responses of single neurons in amygdala to interoceptive and exteroceptive stimuli in conscious cats. Am J Physiol. 1995 Mar;268(3 Pt 2):R666–R675. doi: 10.1152/ajpregu.1995.268.3.R666. [DOI] [PubMed] [Google Scholar]
  47. Kratimenos G. P., Pell M. F., Thomas D. G., Shorvon S. D., Fish D. R., Smith S. J. Open stereotactic selective amygdalo-hippocampectomy for drug resistant epilepsy. Acta Neurochir (Wien) 1992;116(2-4):150–154. doi: 10.1007/BF01540868. [DOI] [PubMed] [Google Scholar]
  48. LaBar K. S., LeDoux J. E., Spencer D. D., Phelps E. A. Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci. 1995 Oct;15(10):6846–6855. doi: 10.1523/JNEUROSCI.15-10-06846.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Li X., Schwartz P. E., Rissman E. F. Distribution of estrogen receptor-beta-like immunoreactivity in rat forebrain. Neuroendocrinology. 1997 Aug;66(2):63–67. doi: 10.1159/000127221. [DOI] [PubMed] [Google Scholar]
  50. Liang K. C., Bennett C., McGaugh J. L. Peripheral epinephrine modulates the effects of post-training amygdala stimulation on memory. Behav Brain Res. 1985 Apr;15(2):93–100. doi: 10.1016/0166-4328(85)90056-7. [DOI] [PubMed] [Google Scholar]
  51. Lilly R., Cummings J. L., Benson D. F., Frankel M. The human Klüver-Bucy syndrome. Neurology. 1983 Sep;33(9):1141–1145. doi: 10.1212/wnl.33.9.1141. [DOI] [PubMed] [Google Scholar]
  52. Malsbury C. W., McKay K. Neurotrophic effects of testosterone on the medial nucleus of the amygdala in adult male rats. J Neuroendocrinol. 1994 Feb;6(1):57–69. doi: 10.1111/j.1365-2826.1994.tb00555.x. [DOI] [PubMed] [Google Scholar]
  53. Mascó D. H., Carrer H. F. Sexual receptivity in female rats after lesion or stimulation in different amygdaloid nuclei. Physiol Behav. 1980 Jun;24(6):1073–1080. doi: 10.1016/0031-9384(80)90050-5. [DOI] [PubMed] [Google Scholar]
  54. McEwen B. S., Sapolsky R. M. Stress and cognitive function. Curr Opin Neurobiol. 1995 Apr;5(2):205–216. doi: 10.1016/0959-4388(95)80028-x. [DOI] [PubMed] [Google Scholar]
  55. McGaugh J. L., Cahill L., Roozendaal B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13508–13514. doi: 10.1073/pnas.93.24.13508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. McGaugh J. L., Introini-Collison I. B., Cahill L. F., Castellano C., Dalmaz C., Parent M. B., Williams C. L. Neuromodulatory systems and memory storage: role of the amygdala. Behav Brain Res. 1993 Dec 20;58(1-2):81–90. doi: 10.1016/0166-4328(93)90092-5. [DOI] [PubMed] [Google Scholar]
  57. McGinnis M. Y., Williams G. W., Lumia A. R. Inhibition of male sex behavior by androgen receptor blockade in preoptic area or hypothalamus, but not amygdala or septum. Physiol Behav. 1996 Sep;60(3):783–789. doi: 10.1016/0031-9384(96)00088-1. [DOI] [PubMed] [Google Scholar]
  58. Meaney M. J., Dodge A. M., Beatty W. W. Sex-dependent effects of amygdaloid lesions on the social play of prepubertal rats. Physiol Behav. 1981 Mar;26(3):467–472. doi: 10.1016/0031-9384(81)90175-x. [DOI] [PubMed] [Google Scholar]
  59. Mega M. S., Cummings J. L., Salloway S., Malloy P. The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiatry Clin Neurosci. 1997 Summer;9(3):315–330. doi: 10.1176/jnp.9.3.315. [DOI] [PubMed] [Google Scholar]
  60. Micevych P. E., Matt D. W., Go V. L. Concentrations of cholecystokinin, substance P, and bombesin in discrete regions of male and female rat brain: sex differences and estrogen effects. Exp Neurol. 1988 May;100(2):416–425. doi: 10.1016/0014-4886(88)90119-7. [DOI] [PubMed] [Google Scholar]
  61. Morris J. S., Ohman A., Dolan R. J. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998 Jun 4;393(6684):467–470. doi: 10.1038/30976. [DOI] [PubMed] [Google Scholar]
  62. Naranjo J. R., Mellström B., Achaval M., Sassone-Corsi P. Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron. 1991 Apr;6(4):607–617. doi: 10.1016/0896-6273(91)90063-6. [DOI] [PubMed] [Google Scholar]
  63. O'Keefe J., Bouma H. Complex swnsory properties of certain amygadala units in the freely moving cat. Exp Neurol. 1969 Mar;23(3):384–398. doi: 10.1016/0014-4886(69)90086-7. [DOI] [PubMed] [Google Scholar]
  64. Osterlund M., Kuiper G. G., Gustafsson J. A., Hurd Y. L. Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Res Mol Brain Res. 1998 Feb;54(1):175–180. doi: 10.1016/s0169-328x(97)00351-3. [DOI] [PubMed] [Google Scholar]
  65. Packard M. G., McGaugh J. L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem. 1996 Jan;65(1):65–72. doi: 10.1006/nlme.1996.0007. [DOI] [PubMed] [Google Scholar]
  66. Parent M. B., Quirarte G. L., Cahill L., McGaugh J. L. Spared retention of inhibitory avoidance learning after posttraining amygdala lesions. Behav Neurosci. 1995 Aug;109(4):803–807. doi: 10.1037//0735-7044.109.4.803. [DOI] [PubMed] [Google Scholar]
  67. Phillips M. L., Young A. W., Scott S. K., Calder A. J., Andrew C., Giampietro V., Williams S. C., Bullmore E. T., Brammer M., Gray J. A. Neural responses to facial and vocal expressions of fear and disgust. Proc Biol Sci. 1998 Oct 7;265(1408):1809–1817. doi: 10.1098/rspb.1998.0506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Phillips R. G., LeDoux J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992 Apr;106(2):274–285. doi: 10.1037//0735-7044.106.2.274. [DOI] [PubMed] [Google Scholar]
  69. Pitkänen A., Savander V., LeDoux J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997 Nov;20(11):517–523. doi: 10.1016/s0166-2236(97)01125-9. [DOI] [PubMed] [Google Scholar]
  70. Quirk G. J., Repa C., LeDoux J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron. 1995 Nov;15(5):1029–1039. doi: 10.1016/0896-6273(95)90092-6. [DOI] [PubMed] [Google Scholar]
  71. Rasia-Filho A. A., Londero R. G., Achaval M. Effects of gonadal hormones on the morphology of neurons from the medial amygdaloid nucleus of rats. Brain Res Bull. 1999 Jan 15;48(2):173–183. doi: 10.1016/s0361-9230(98)00160-9. [DOI] [PubMed] [Google Scholar]
  72. Rasia-Filho A. A., Peres T. M., Cubilla-Gutierrez F. H., Lucion A. B. Effect of estradiol implanted in the corticomedial amygdala on the sexual behavior of castrated male rats. Braz J Med Biol Res. 1991;24(10):1041–1049. [PubMed] [Google Scholar]
  73. Rauch S. L., Shin L. M. Functional neuroimaging studies in posttraumatic stress disorder. Ann N Y Acad Sci. 1997 Jun 21;821:83–98. doi: 10.1111/j.1749-6632.1997.tb48271.x. [DOI] [PubMed] [Google Scholar]
  74. Robbins T. W., Everitt B. J. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996 Apr;6(2):228–236. doi: 10.1016/s0959-4388(96)80077-8. [DOI] [PubMed] [Google Scholar]
  75. Roozendaal B., Carmi O., McGaugh J. L. Adrenocortical suppression blocks the memory-enhancing effects of amphetamine and epinephrine. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1429–1433. doi: 10.1073/pnas.93.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sar M., Stumpf W. E. Autoradiographic localization of radioactivity in the rat brain after the injection of 1,2-3H-testosterone. Endocrinology. 1973 Jan;92(1):251–256. doi: 10.1210/endo-92-1-251. [DOI] [PubMed] [Google Scholar]
  77. Shaikh M. B., Siegel A. Neuroanatomical and neurochemical mechanisms underlying amygdaloid control of defensive rage behavior in the cat. Braz J Med Biol Res. 1994 Dec;27(12):2759–2779. [PubMed] [Google Scholar]
  78. Sheridan P. J. The nucleus interstitialis striae terminalis and the nucleus amygdaloideus medialis: prime targets for androgen in the rat forebrain. Endocrinology. 1979 Jan;104(1):130–136. doi: 10.1210/endo-104-1-130. [DOI] [PubMed] [Google Scholar]
  79. Shinoda K., Nagano M., Osawa Y. Neuronal aromatase expression in preoptic, strial, and amygdaloid regions during late prenatal and early postnatal development in the rat. J Comp Neurol. 1994 May 1;343(1):113–129. doi: 10.1002/cne.903430109. [DOI] [PubMed] [Google Scholar]
  80. Shughrue P. J., Lane M. V., Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol. 1997 Dec 1;388(4):507–525. doi: 10.1002/(sici)1096-9861(19971201)388:4<507::aid-cne1>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  81. Siddiqui A., Shah B. H. Neonatal androgen manipulation differentially affects the development of monoamine systems in rat cerebral cortex, amygdala and hypothalamus. Brain Res Dev Brain Res. 1997 Feb 20;98(2):247–252. doi: 10.1016/s0165-3806(96)00171-x. [DOI] [PubMed] [Google Scholar]
  82. Silva M. A., Tomaz C. Amnesia after diazepam infusion into basolateral but not central amygdala of Rattus norvegicus. Neuropsychobiology. 1995;32(1):31–36. doi: 10.1159/000119209. [DOI] [PubMed] [Google Scholar]
  83. Simerly R. B., Chang C., Muramatsu M., Swanson L. W. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990 Apr 1;294(1):76–95. doi: 10.1002/cne.902940107. [DOI] [PubMed] [Google Scholar]
  84. Simerly R. B. Hormonal control of neuropeptide gene expression in sexually dimorphic olfactory pathways. Trends Neurosci. 1990 Mar;13(3):104–110. doi: 10.1016/0166-2236(90)90186-e. [DOI] [PubMed] [Google Scholar]
  85. Smith D. A., Flynn J. P. Afferent projections to affective attack sites in cat hypothalamus. Brain Res. 1980 Jul 21;194(1):41–51. doi: 10.1016/0006-8993(80)91317-7. [DOI] [PubMed] [Google Scholar]
  86. Swanson L. W., Petrovich G. D. What is the amygdala? Trends Neurosci. 1998 Aug;21(8):323–331. doi: 10.1016/s0166-2236(98)01265-x. [DOI] [PubMed] [Google Scholar]
  87. Trimble M. R., Mendez M. F., Cummings J. L. Neuropsychiatric symptoms from the temporolimbic lobes. J Neuropsychiatry Clin Neurosci. 1997 Summer;9(3):429–438. doi: 10.1176/jnp.9.3.429. [DOI] [PubMed] [Google Scholar]
  88. Vinader-Caerols C., Collado P., Segovia S., Guillamón A. Sex differences in the posteromedial cortical nucleus of the amygdala in the rat. Neuroreport. 1998 Aug 3;9(11):2653–2656. doi: 10.1097/00001756-199808030-00042. [DOI] [PubMed] [Google Scholar]
  89. Wagner C. K., Morrell J. I. Distribution and steroid hormone regulation of aromatase mRNA expression in the forebrain of adult male and female rats: a cellular-level analysis using in situ hybridization. J Comp Neurol. 1996 Jun 17;370(1):71–84. doi: 10.1002/(SICI)1096-9861(19960617)370:1<71::AID-CNE7>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  90. Wood R. I. Estradiol, but not dihydrotestosterone, in the medial amygdala facilitates male hamster sex behavior. Physiol Behav. 1996 Apr-May;59(4-5):833–841. doi: 10.1016/0031-9384(95)02204-x. [DOI] [PubMed] [Google Scholar]
  91. Young B. J., Leaton R. N. Amygdala central nucleus lesions attenuate acoustic startle stimulus-evoked heart rate changes in rats. Behav Neurosci. 1996 Apr;110(2):228–237. doi: 10.1037//0735-7044.110.2.228. [DOI] [PubMed] [Google Scholar]
  92. Young S. L., Bohenek D. L., Fanselow M. S. NMDA processes mediate anterograde amnesia of contextual fear conditioning induced by hippocampal damage: immunization against amnesia by context preexposure. Behav Neurosci. 1994 Feb;108(1):19–29. doi: 10.1037//0735-7044.108.1.19. [DOI] [PubMed] [Google Scholar]
  93. da Costa Gomez T. M., Behbehani M. M. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors. Brain Res. 1995 Aug 14;689(1):21–31. doi: 10.1016/0006-8993(95)00525-u. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Psychiatry and Neuroscience are provided here courtesy of Canadian Science Publishing

RESOURCES