Skip to main content
Gut logoLink to Gut
. 1975 Jan;16(1):53–56. doi: 10.1136/gut.16.1.53

Deoxycholate depresses small-intestinal enzyme activity.

M Gracey, M Houghton, J Thomas
PMCID: PMC1410943  PMID: 1140627

Abstract

Feeding sodium deoxycholate orally to rats for four days caused depression of the activity of the small intestinal enzymes lactase, sucrase, maltase, alkaline phosphatase, and N-acetyl-beta-glucosaminidase. The first four are brush border enzymes, the last a lysosomal enzyme. Alkaline phosphatase activity recovered very rapidly and rebounded to above the normal level within 24 hours. The activity of the three disaccharidases returned to normal within seven days while no recovery was observed within 96 hours of the activity of the lysosomal enzyme, N-acetyl-beta-glucosaminidase, after removing the bile salt from the diet.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ament M. E., Shimoda S. S., Saunders D. R., Rubin C. E. Pathogenesis of steatorrhea in three cases of small intestinal stasis syndrome. Gastroenterology. 1972 Nov;63(5):728–747. [PubMed] [Google Scholar]
  2. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  3. Gracey M., Burke V., Oshin A., Barker J., Glasgow E. F. Bacteria, bile salts, and intestinal monosaccharide malabsorption. Gut. 1971 Sep;12(9):683–692. doi: 10.1136/gut.12.9.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gracey M., Papadimitriou J., Bower G. Ultrastructural changes in the small intestines of rats with self-filling blind loops. Gastroenterology. 1974 Oct;67(4):646–651. [PubMed] [Google Scholar]
  5. Gracey M., Papadimitriou J., Burke V., Thomas J., Bower G. Effects on small-intestinal function and structure induced by feeding a deconjugated bile salt. Gut. 1973 Jul;14(7):519–528. doi: 10.1136/gut.14.7.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HOLT J. H., MILLER D. The localization of phosphomonoesterase and aminopeptidase in brush borders isolated from intestinal epithelial cells. Biochim Biophys Acta. 1962 Apr 9;58:239–243. doi: 10.1016/0006-3002(62)91004-1. [DOI] [PubMed] [Google Scholar]
  7. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Langman M. J., Leuthold E., Robson E. B., Harris J., Luffman J. E., Harris H. Influence of diet on the "intestinal" component of serum alkaline phosphatase in people of different ABO blood groups and secretor status. Nature. 1966 Oct 1;212(5057):41–43. doi: 10.1038/212041a0. [DOI] [PubMed] [Google Scholar]
  10. MILLER D., CRANE R. K. The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta. 1961 Sep 16;52:293–298. doi: 10.1016/0006-3002(61)90678-3. [DOI] [PubMed] [Google Scholar]
  11. WACHSTEIN M., BRADSHAW M. HISTOCHEMICAL LOCALIZATION OF ENZYME ACTIVITY IN THE KIDNEYS OF THREE MAMMALIAN SPECIES DURING THEIR POSTNATAL DEVELOPMENT. J Histochem Cytochem. 1965 Jan;13:44–56. doi: 10.1177/13.1.44. [DOI] [PubMed] [Google Scholar]
  12. Warnes T. W. Alkaline phosphatase. Gut. 1972 Nov;13(11):926–937. doi: 10.1136/gut.13.11.926. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES