Abstract
In order to investigate the source of free amino acids found in the gut lumen during absorption of dipeptides, as well as evaluating the role of brush border peptidases in the mucosal hydrolysis of dipeptides during absorption, rates of dipeptide disappearance and appearance of hydrolytic products were measured during perfusion of rat jejunum and ileum in vivo with buffered and unbuffered 10 mM solutions of glycl-L-phenylalanine (Gly-Phe) and L-phenylalanyl-glycine (Phe-Gly). Mucosal brush border peptidase activity was then measured in the perfused segments in vitro at luminal pH and at two substrate concentrations. In addition cytosol peptidase activity in the perfused segments was measured at pH 7-4 and at 10 mM substrate concentrations. In the jejunum, there was a relationship between rates of free phenylalanine appearance in vivo (Phe-Gly greater than Gly-Phe) and rates of brush border (Phe-Gly greater than Gly-Phe) rather than cytosol (Gly-Phe greater than Phe-Gly) peptidase activities. No constant relationship between free phenylalanine appearance and hydrolysis of the dipeptides by either brush border or cytosol peptidases was observed in the ileal studies. These findings suggest that, in the jejunum, hydrolytic products originate from the surface of the cell whereas, in the ileum, hydrolytic products originate from both the intracellular compartment as well as from the surface of the mucosal cell. In the jejunum, in vitro rates of brush border hydrolysis of Gly-Phe were always less than in vivo disappearance rates, whereas rates of Phe-Gly brush border hydrolysis always exceeded luminal disappearance rates. These data imply that Gly-Phe is predominantly transported intact and hydrolysed by cytosol peptidases, In contrast, brush border peptidases play an importnat role in the mucosal hydrolysis of Phe-Gly.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addison J. M., Burston D., Dalrymple J. A., Matthews D. M., Payne J. W., Sleisenger M. H., Wilkinson S. A common mechanism for transport of di- and tri-peptides by hamster jejunum in vitro. Clin Sci Mol Med. 1975 Oct;49(4):313–322. doi: 10.1042/cs0490313. [DOI] [PubMed] [Google Scholar]
- Addison J. M., Burston D., Matthews D. M. Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin Sci. 1972 Dec;43(6):907–911. doi: 10.1042/cs0430907. [DOI] [PubMed] [Google Scholar]
- Addison J. M., Burston D., Payne J. W., Wilkinson S., Matthews D. M. Evidence for active transport of tripeptides by hamster jejunum in vitro. Clin Sci Mol Med. 1975 Oct;49(4):305–312. doi: 10.1042/cs0490305. [DOI] [PubMed] [Google Scholar]
- Adibi S. A. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest. 1971 Nov;50(11):2266–2275. doi: 10.1172/JCI106724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auricchio S., Pierro M., Andria G., De Ritis G. Enzymic activities of the brush border membrane of rat intestine hydrolyzing -naphthylamides of amino acids, leucinamide and dipeptides. Biochim Biophys Acta. 1972 Aug 9;274(2):420–425. doi: 10.1016/0005-2736(72)90188-5. [DOI] [PubMed] [Google Scholar]
- BORGSTROM B., DAHLQVIST A., LUNDH G., SJOVALL J. Studies of intestinal digestion and absorption in the human. J Clin Invest. 1957 Oct;36(10):1521–1536. doi: 10.1172/JCI103549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd C. A., Cheeseman C. I., Parsons D. S. Amino acid movements across the wall of anuran small intestine perfused through the vascular bed. J Physiol. 1975 Sep;250(2):409–429. doi: 10.1113/jphysiol.1975.sp011062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng B., Navab F., Lis M. T., Miller T. N., Matthews D. M. Mechanisms of dipeptide uptake by rat small intestine in vitro. Clin Sci. 1971 Mar;40(3):247–259. doi: 10.1042/cs0400247. [DOI] [PubMed] [Google Scholar]
- Dietschy J. M., Sallee V. L., Wilson F. A. Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology. 1971 Dec;61(6):932–934. [PubMed] [Google Scholar]
- Fujita M., Parsons D. S., Wojnarowska F. Oligopeptidases of brush border membranes of rat small intestinal mucosal cells. J Physiol. 1972 Dec;227(2):377–394. doi: 10.1113/jphysiol.1972.sp010038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heizer W. D., Kerley R. L., Isselbacher K. J. Intestinal peptide hydrolases differences between brush border and cytoplasmic enzymes. Biochim Biophys Acta. 1972 May 16;264(3):450–461. doi: 10.1016/0304-4165(72)90008-6. [DOI] [PubMed] [Google Scholar]
- Josefsson L., Sjöström H. Intestinal dipeptidases. IV. Studies on the release and subcellular distribution of intestinal dipeptidases of the mucosa cells of the pig. Acta Physiol Scand. 1966 May;67(1):27–33. doi: 10.1111/j.1748-1716.1966.tb03283.x. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Birtwhistle W., Kim Y. W. Peptide hydrolases in the bruch border and soluble fractions of small intestinal mucosa of rat and man. J Clin Invest. 1972 Jun;51(6):1419–1430. doi: 10.1172/JCI106938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. S., Brophy E. J., Nicholson J. A. Rat intestinal brush border membrane peptidases. II. Enzymatic properties, immunochemistry, and interactions with lectins of two different forms of the enzyme. J Biol Chem. 1976 Jun 10;251(11):3206–3212. [PubMed] [Google Scholar]
- Kim Y. S., Brophy E. J. Rat intestinal brush border membrane peptidases. I. Solubilization, purification, and physicochemical properties of two different forms of the enzyme. J Biol Chem. 1976 Jun 10;251(11):3199–3205. [PubMed] [Google Scholar]
- Kim Y. S., Kim Y. W., Sleisenger M. H. Studies on the properties of peptide hydrolases in the brush-border and soluble fractions of small intestinal mucosa of rat and man. Biochim Biophys Acta. 1974 Nov 25;370(1):283–296. doi: 10.1016/0005-2744(74)90053-9. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., McCarthy D. M., Lane W., Fong W. Alterations in the levels of peptide hydrolases and other enzymes in brush-border and soluble fractions of rat small intestinal mucosa during starvation and refeeding. Biochim Biophys Acta. 1973 Sep 15;321(1):262–273. doi: 10.1016/0005-2744(73)90081-8. [DOI] [PubMed] [Google Scholar]
- Lane A. E., Silk D. B., Clark M. L. Absorption of two proline containing peptides by rat small intestine in vivo. J Physiol. 1975 Jun;248(1):143–149. doi: 10.1113/jphysiol.1975.sp010966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louvard D., Maroux S., Vannier C., Desnuelle P. Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100. Biochim Biophys Acta. 1975 Jan 28;375(2):235–248. [PubMed] [Google Scholar]
- Lucas M. L., Blair J. A., Cooper B., Matty A. J. Further investigations with pH microelectrodes into the jejunal microclimate in rat and man. Gut. 1975 Oct;16(10):844–844. [PubMed] [Google Scholar]
- Mathews D. M., Adibi S. A. Peptide absorption. Gastroenterology. 1976 Jul;71(1):151–161. [PubMed] [Google Scholar]
- Matthews D. M., Addison J. M., Burston D. Evidence for active transport of the dipeptide carnosine (beta-alanyl-L-histidine) by hamster jejunum in vitro. Clin Sci Mol Med. 1974 Jun;46(6):693–705. doi: 10.1042/cs0460693. [DOI] [PubMed] [Google Scholar]
- Matthews D. M. Intestinal absorption of peptides. Physiol Rev. 1975 Oct;55(4):537–608. doi: 10.1152/physrev.1975.55.4.537. [DOI] [PubMed] [Google Scholar]
- Nixon S. E., Mawer G. E. The digestion and absorption of protein in man. 1. The site of absorption. Br J Nutr. 1970 Mar;24(1):227–240. doi: 10.1079/bjn19700023. [DOI] [PubMed] [Google Scholar]
- Peters T. J., MacMahon M. T. The absorption of glycine and glycine oligopeptides by the rat. Clin Sci. 1970 Dec;39(6):811–821. doi: 10.1042/cs0390811. [DOI] [PubMed] [Google Scholar]
- Peters T. J. The subcellular localization of di- and tri-peptide hydrolase activity in guinea-pig small intestine. Biochem J. 1970 Nov;120(1):195–203. doi: 10.1042/bj1200195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINSON G. B. The distribution of peptidases in subcellular fractions from the mucosa of the small intestine of the rat. Biochem J. 1963 Jul;88:162–168. doi: 10.1042/bj0880162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes J. B., Eichholz A., Crane R. K. Studies on the organization of the brush border in intestinal epithelial cells. IV. Aminopeptidase activity in microvillus membranes of hamster intestinal brush borders. Biochim Biophys Acta. 1967;135(5):959–965. doi: 10.1016/0005-2736(67)90065-x. [DOI] [PubMed] [Google Scholar]
- Sigrist-Nelson K. Dipeptide transport in isolated intestinal brush border membrane. Biochim Biophys Acta. 1975 Jun 25;394(2):220–226. doi: 10.1016/0005-2736(75)90260-6. [DOI] [PubMed] [Google Scholar]
- Silk D. B., Kim Y. S. A study of intraluminal peptide hydrolase activity in the rat. Clin Sci Mol Med. 1975 Nov;49(5):523–526. doi: 10.1042/cs0490523. [DOI] [PubMed] [Google Scholar]
- Silk D. B., Kim Y. S. Release of peptide hydrolases during incubation of intact intestinal segments in vitro. J Physiol. 1976 Jun;258(2):489–497. doi: 10.1113/jphysiol.1976.sp011432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silk D. B., Perrett D., Clark M. L. Intestinal transport of two dipeptides containing the same two neutral amino acids in man. Clin Sci Mol Med. 1973 Sep;45(3):291–299. doi: 10.1042/cs0450291. [DOI] [PubMed] [Google Scholar]
- Silk D. B., Perrett D., Webb J. P., Clark M. L. Absorption of two tripeptides by the human small intestine: a study using a perfusion technique. Clin Sci Mol Med. 1974 Mar;46(3):393–402. doi: 10.1042/cs0460393. [DOI] [PubMed] [Google Scholar]
- Silk D. B. Progress report. Peptide absorption in man. Gut. 1974 Jun;15(6):494–501. doi: 10.1136/gut.15.6.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silk D. B., Webb J. P., Lane A. E., Clark M. L., Dawson A. M. Functional differentiation of human jejunum and ileum: a comparison of the handling of glucose, peptides, and amino acids. Gut. 1974 Jun;15(6):444–449. doi: 10.1136/gut.15.6.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Dietschy J. M. The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta. 1974 Aug 21;363(1):112–126. doi: 10.1016/0005-2736(74)90010-8. [DOI] [PubMed] [Google Scholar]
- Wojnarowska F., Gray G. M. Intestinal surface peptide hydrolases: identification and characterization of three enzymes from rat brush border. Biochim Biophys Acta. 1975 Sep 22;403(1):147–160. doi: 10.1016/0005-2744(75)90018-2. [DOI] [PubMed] [Google Scholar]
