Abstract
The spontaneous locomotion of immunomagnetically isolated resting CD4+ and CD8+ lymphocytes in three-dimensional collagen gels was recorded by time-lapse videomicroscopy. Two-dimensional projections of the paths of randomly selected individual cells were digitized, plotted and quantitatively analysed. Among five different donors 46 +/- 10% of CD4+ and CD8+ lymphocytes (n = 180) showed initial spontaneous locomotion (individual speed 5-25 microns/min; mean speed CD4+ 5.2 +/- 3.6 microns, CD8+ 3.23 +/- 2.72 microns). Active CD4+ cells were constantly migrating for more than 4 hr, whereas CD8+ lymphocytes significantly slowed down after 60-90 min in the collagen gel (P < 0.003). Quantitative analysis of the paths indicated at least three migratory phenotypes: (1) spontaneously locomoting cells exhibiting high speed and low frequency of stopping; (2) a major non-motile fraction without significant displacement; and (3) a subpopulation within CD4+ and CD8+ cells with intermediate activity of speed and stopping. Further subtype analysis of immunomagnetically isolated CD45RAhigh/ROlow or CD45RAlow/ROhigh lymphocytes showed that more than 90% of CD4+ CD45RAhigh/ROlow cells were actively locomoting. In contrast, only 20% of the CD4+ CD45ROhigh/RAlow phenotype showed spontaneous motility to a limited degree. The data indicate that resting CD4+ and CD8+ lymphocytes comprise further locomotory subpopulation related to the expression of different CD45 isoforms.
Full text
PDF![617](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/1266e3562216/immunology00083-0115.png)
![618](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/a1ccb7830f85/immunology00083-0116.png)
![619](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/d8623d72f433/immunology00083-0117.png)
![620](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/8762b918c11c/immunology00083-0118.png)
![621](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/968b0316754b/immunology00083-0119.png)
![622](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/fc04f4a99298/immunology00083-0120.png)
![623](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/f43266954481/immunology00083-0121.png)
![624](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2665/1414901/bfc2f07be301/immunology00083-0122.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arencibia I., Sundqvist K. G. Collagen receptor on T lymphocytes and the control of lymphocyte motility. Eur J Immunol. 1989 May;19(5):929–934. doi: 10.1002/eji.1830190521. [DOI] [PubMed] [Google Scholar]
- Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
- Damle N. K., Eberhardt C., Van der Vieren M. Direct interaction with primed CD4+ CD45R0+ memory T lymphocytes induces expression of endothelial leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of vascular endothelial cells. Eur J Immunol. 1991 Dec;21(12):2915–2923. doi: 10.1002/eji.1830211204. [DOI] [PubMed] [Google Scholar]
- Damle N. K., Klussman K., Linsley P. S., Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J Immunol. 1992 Apr 1;148(7):1985–1992. [PubMed] [Google Scholar]
- Friedl P., Noble P. B., Zänker K. S. Lymphocyte locomotion in three-dimensional collagen gels. Comparison of three quantitative methods for analysing cell trajectories. J Immunol Methods. 1993 Oct 15;165(2):157–165. doi: 10.1016/0022-1759(93)90341-4. [DOI] [PubMed] [Google Scholar]
- Haston W. S., Shields J. M., Wilkinson P. C. Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol. 1982 Mar;92(3):747–752. doi: 10.1083/jcb.92.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershkoviz R., Gilat D., Miron S., Mekori Y. A., Aderka D., Wallach D., Vlodavsky I., Cohen I. R., Lider O. Extracellular matrix induces tumour necrosis factor-alpha secretion by an interaction between resting rat CD4+ T cells and macrophages. Immunology. 1993 Jan;78(1):50–57. [PMC free article] [PubMed] [Google Scholar]
- Inoue T., Asano Y., Matsuoka S., Furutani-Seiki M., Aizawa S., Nishimura H., Shirai T., Tada T. Distinction of mouse CD8+ suppressor effector T cell clones from cytotoxic T cell clones by cytokine production and CD45 isoforms. J Immunol. 1993 Mar 15;150(6):2121–2128. [PubMed] [Google Scholar]
- Koretzky G. A. Role of the CD45 tyrosine phosphatase in signal transduction in the immune system. FASEB J. 1993 Mar;7(5):420–426. doi: 10.1096/fasebj.7.5.8462784. [DOI] [PubMed] [Google Scholar]
- Li Y. Y., Cheung H. T. Basement membrane and its components on lymphocyte adhesion, migration, and proliferation. J Immunol. 1992 Nov 15;149(10):3174–3181. [PubMed] [Google Scholar]
- Mackay C. R., Marston W. L., Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990 Mar 1;171(3):801–817. doi: 10.1084/jem.171.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay C. R., Marston W. L., Dudler L., Spertini O., Tedder T. F., Hein W. R. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur J Immunol. 1992 Apr;22(4):887–895. doi: 10.1002/eji.1830220402. [DOI] [PubMed] [Google Scholar]
- Mackay C. R. T-cell memory: the connection between function, phenotype and migration pathways. Immunol Today. 1991 Jun;12(6):189–192. doi: 10.1016/0167-5699(91)90051-T. [DOI] [PubMed] [Google Scholar]
- Masuyama J., Berman J. S., Cruikshank W. W., Morimoto C., Center D. M. Evidence for recent as well as long term activation of T cells migrating through endothelial cell monolayers in vitro. J Immunol. 1992 Mar 1;148(5):1367–1374. [PubMed] [Google Scholar]
- Newman I., Wilkinson P. C. Locomotor responses of human CD45 lymphocyte subsets: preferential locomotion of CD45RO+ lymphocytes in response to attractants and mitogens. Immunology. 1993 Jan;78(1):92–98. [PMC free article] [PubMed] [Google Scholar]
- Noble P. B. Extracellular matrix and cell migration: locomotory characteristics of MOS-11 cells within a three-dimensional hydrated collagen lattice. J Cell Sci. 1987 Mar;87(Pt 2):241–248. doi: 10.1242/jcs.87.2.241. [DOI] [PubMed] [Google Scholar]
- Oppenheimer-Marks N., Davis L. S., Bogue D. T., Ramberg J., Lipsky P. E. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol. 1991 Nov 1;147(9):2913–2921. [PubMed] [Google Scholar]
- Picker L. J., Butcher E. C. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol. 1992;10:561–591. doi: 10.1146/annurev.iy.10.040192.003021. [DOI] [PubMed] [Google Scholar]
- Picker L. J., Treer J. R., Ferguson-Darnell B., Collins P. A., Buck D., Terstappen L. W. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J Immunol. 1993 Feb 1;150(3):1105–1121. [PubMed] [Google Scholar]
- Pietschmann P., Cush J. J., Lipsky P. E., Oppenheimer-Marks N. Identification of subsets of human T cells capable of enhanced transendothelial migration. J Immunol. 1992 Aug 15;149(4):1170–1178. [PubMed] [Google Scholar]
- Pitzalis C., Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. doi: 10.1002/eji.1830180915. [DOI] [PubMed] [Google Scholar]
- Ratner S., Patrick P., Bora G. Lymphocyte development of adherence and motility in extracellular matrix during IL-2 stimulation. J Immunol. 1992 Jul 15;149(2):681–688. [PubMed] [Google Scholar]
- Saltini C., Kirby M., Trapnell B. C., Tamura N., Crystal R. G. Biased accumulation of T lymphocytes with "memory"-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung. J Exp Med. 1990 Apr 1;171(4):1123–1140. doi: 10.1084/jem.171.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
- Shimizu Y., Shaw S., Graber N., Gopal T. V., Horgan K. J., Van Seventer G. A., Newman W. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 1991 Feb 28;349(6312):799–802. doi: 10.1038/349799a0. [DOI] [PubMed] [Google Scholar]
- Shimizu Y., Shaw S. Lymphocyte interactions with extracellular matrix. FASEB J. 1991 Jun;5(9):2292–2299. doi: 10.1096/fasebj.5.9.1860621. [DOI] [PubMed] [Google Scholar]
- Shimizu Y., van Seventer G. A., Horgan K. J., Shaw S. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol. 1990 Jul 1;145(1):59–67. [PubMed] [Google Scholar]
- Wagner N., Engel P., Tedder T. F. Regulation of the tyrosine kinase-dependent adhesion pathway in human lymphocytes through CD45. J Immunol. 1993 Jun 1;150(11):4887–4899. [PubMed] [Google Scholar]
- de Jong R., Brouwer M., Miedema F., van Lier R. A. Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J Immunol. 1991 Apr 1;146(7):2088–2094. [PubMed] [Google Scholar]