Skip to main content
Immunology logoLink to Immunology
. 1994 Oct;83(2):171–179.

Antigen-specific human immunoglobulin production in SCID mice transplanted with human peripheral lymphocytes is dependent on CD4+ CD45RO+ T cells.

C Mårtensson 1, K Kristensson 1, S Kalliomäki 1, C A Borrebaeck 1, R Carlsson 1
PMCID: PMC1414949  PMID: 7835932

Abstract

Severe combined immunodeficient (SCID) mice, lacking mature T and B cells and virtually devoid of endogenous serum immunoglobulins, spontaneously produce large amounts of human immunoglobulin after transplantation with human peripheral blood lymphocytes (PBL). Moreover, after immunization with antigen an active immune response resulting in a production of specific antibodies can be induced. Here we report that human T cells must be co-transplanted with B cells into the SCID mice for immunoglobulin production to occur. Resting human B cells could be activated to immunoglobulin production in the absence of human monocytes and a specific antibody response to tetanus toxoid (TT) could be induced, suggesting that the human B cells could present antigen to T cells in the SCID environment. Production of human immunoglobulins, as well as specific antibodies, was obtained only if CD4+ T cells of the memory phenotype, i.e. expressing CD45RO, were present. No human immunoglobulin, either of IgM or of IgG isotype, was found in SCID sera if mice were co-transplanted with human B cells and CD45RA expressing CD4+ T cells. However, FACS analysis revealed that the transplanted CD45RA+ cells became activated and differentiated towards CD45RO+ cells within 1-2 weeks. These cells also gained the lymphokine gene expression pattern associated with CD45RO+ cells, as demonstrated by polymerase chain reaction (PCR) analysis, and could support immunoglobulin production in SCID mice transplanted with fresh B cells. In fact, after differentiation of CD4+ CD45RA+ T cells towards expression of CD45RO, either in vivo in the SCID mouse or in vitro, these cells could interact with and activate human B cells to immunoglobulin production. Furthermore, in vitro activated and differentiated CD4+ CD45RA+ T cells from vaccinated donors were also able to support production of TT-specific antibodies provided the antigen was administered.

Full text

PDF
175

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedi M. R., Christensson B., Islam K. B., Hammarström L., Smith C. I. Immunoglobulin production in severe combined immunodeficient (SCID) mice reconstituted with human peripheral blood mononuclear cells. Eur J Immunol. 1992 Mar;22(3):823–828. doi: 10.1002/eji.1830220329. [DOI] [PubMed] [Google Scholar]
  2. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  3. Bankert R. B., Umemoto T., Sugiyama Y., Chen F. A., Repasky E., Yokota S. Human lung tumors, patients' peripheral blood lymphocytes and tumor infiltrating lymphocytes propagated in scid mice. Curr Top Microbiol Immunol. 1989;152:201–210. doi: 10.1007/978-3-642-74974-2_24. [DOI] [PubMed] [Google Scholar]
  4. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  5. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  6. Carlsson R., Dohlsten M., Boketoft A., Sjöquist J., Sjögren H. O. Staphylococcal protein A (SpA) does not induce production of interferon-gamma in human mononuclear blood cells. Cell Immunol. 1984 Jun;86(1):136–144. doi: 10.1016/0008-8749(84)90366-6. [DOI] [PubMed] [Google Scholar]
  7. Carlsson R., Fischer H., Sjögren H. O. Binding of staphylococcal enterotoxin A to accessory cells is a requirement for its ability to activate human T cells. J Immunol. 1988 Apr 15;140(8):2484–2488. [PubMed] [Google Scholar]
  8. Carlsson R., Mårtensson C., Kalliomäki S., Ohlin M., Borrebaeck C. A. Human peripheral blood lymphocytes transplanted into SCID mice constitute an in vivo culture system exhibiting several parameters found in a normal humoral immune response and are a source of immunocytes for the production of human monoclonal antibodies. J Immunol. 1992 Feb 15;148(4):1065–1071. [PubMed] [Google Scholar]
  9. Duchosal M. A., Eming S. A., Fischer P., Leturcq D., Barbas C. F., 3rd, McConahey P. J., Caothien R. H., Thornton G. B., Dixon F. J., Burton D. R. Immunization of hu-PBL-SCID mice and the rescue of human monoclonal Fab fragments through combinatorial libraries. Nature. 1992 Jan 16;355(6357):258–262. doi: 10.1038/355258a0. [DOI] [PubMed] [Google Scholar]
  10. Fuchs E. J., Matzinger P. B cells turn off virgin but not memory T cells. Science. 1992 Nov 13;258(5085):1156–1159. doi: 10.1126/science.1439825. [DOI] [PubMed] [Google Scholar]
  11. Galili U., Schlesinger M. The formation of stable E rosettes after neuraminidase treatment of either human peripheral blood lymphocytes or of sheep red blood cells. J Immunol. 1974 May;112(5):1628–1634. [PubMed] [Google Scholar]
  12. Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayward A. R., Lee J., Beverley P. C. Ontogeny of expression of UCHL1 antigen on TcR-1+ (CD4/8) and TcR delta+ T cells. Eur J Immunol. 1989 Apr;19(4):771–773. doi: 10.1002/eji.1830190430. [DOI] [PubMed] [Google Scholar]
  14. Kamel-Reid S., Dick J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science. 1988 Dec 23;242(4886):1706–1709. doi: 10.1126/science.2904703. [DOI] [PubMed] [Google Scholar]
  15. Kristensson K., Borrebaeck C. A., Carlsson R. Human CD4+ T cells expressing CD45RA acquire the lymphokine gene expression of CD45RO+ T-helper cells after activation in vitro. Immunology. 1992 May;76(1):103–109. [PMC free article] [PubMed] [Google Scholar]
  16. Kristensson K., Dohlsten M., Fischer H., Ericsson P. O., Hedlund G., Sjögren H. O., Carlsson R. Phenotypical and functional differentiation of CD4+ CD45RA+ human T cells following polyclonal activation. Scand J Immunol. 1990 Sep;32(3):243–253. doi: 10.1111/j.1365-3083.1990.tb02917.x. [DOI] [PubMed] [Google Scholar]
  17. Kristensson K., Kristensen L., Borrebaeck C. A., Carlsson R. Activation of human CD4+45RA+ T cells using B cells as accessory cells. Immunol Lett. 1994 Mar;39(3):223–229. doi: 10.1016/0165-2478(94)90162-7. [DOI] [PubMed] [Google Scholar]
  18. Lea T., Smeland E., Funderud S., Vartdal F., Davies C., Beiske K., Ugelstad J. Characterization of human mononuclear cells after positive selection with immunomagnetic particles. Scand J Immunol. 1986 Apr;23(4):509–519. doi: 10.1111/j.1365-3083.1986.tb03083.x. [DOI] [PubMed] [Google Scholar]
  19. Markham R. B., Donnenberg A. D. Effect of donor and recipient immunization protocols on primary and secondary human antibody responses in SCID mice reconstituted with human peripheral blood mononuclear cells. Infect Immun. 1992 Jun;60(6):2305–2308. doi: 10.1128/iai.60.6.2305-2308.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
  21. Merkenschlager M., Terry L., Edwards R., Beverley P. C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. doi: 10.1002/eji.1830181102. [DOI] [PubMed] [Google Scholar]
  22. Michie C. A., McLean A., Alcock C., Beverley P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992 Nov 19;360(6401):264–265. doi: 10.1038/360264a0. [DOI] [PubMed] [Google Scholar]
  23. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  24. Nadal D., Albini B., Chen C. Y., Schläpfer E., Bernstein J. M., Ogra P. L. Distribution and engraftment patterns of human tonsillar mononuclear cells and immunoglobulin-secreting cells in mice with severe combined immunodeficiency: role of the Epstein-Barr virus. Int Arch Allergy Appl Immunol. 1991;95(4):341–351. doi: 10.1159/000235471. [DOI] [PubMed] [Google Scholar]
  25. Namikawa R., Weilbaecher K. N., Kaneshima H., Yee E. J., McCune J. M. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990 Oct 1;172(4):1055–1063. doi: 10.1084/jem.172.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neil G. A., Sammons D. W. Immunization of SCID-Hu mice and generation of anti-hepatitis B surface antigen-specific hybridomas by electrofusion. Hum Antibodies Hybridomas. 1992 Oct;3(4):201–205. [PubMed] [Google Scholar]
  27. Noelle R. J., Shepherd D. M., Fell H. P. Cognate interaction between T helper cells and B cells. VII. Role of contact and lymphokines in the expression of germ-line and mature gamma 1 transcripts. J Immunol. 1992 Aug 15;149(4):1164–1169. [PubMed] [Google Scholar]
  28. Ohlin M., Danielsson L., Carlsson R., Borrebaeck C. A. The effect of leucyl-leucine methyl ester on proliferation and Ig secretion of EBV-transformed human B lymphocytes. Immunology. 1989 Apr;66(4):485–490. [PMC free article] [PubMed] [Google Scholar]
  29. Phillips R. A., Jewett M. A., Gallie B. L. Growth of human tumors in immune-deficient scid mice and nude mice. Curr Top Microbiol Immunol. 1989;152:259–263. doi: 10.1007/978-3-642-74974-2_31. [DOI] [PubMed] [Google Scholar]
  30. Ronchese F., Hausmann B. B lymphocytes in vivo fail to prime naive T cells but can stimulate antigen-experienced T lymphocytes. J Exp Med. 1993 Mar 1;177(3):679–690. doi: 10.1084/jem.177.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rothstein D. M., Yamada A., Schlossman S. F., Morimoto C. Cyclic regulation of CD45 isoform expression in a long term human CD4+CD45RA+ T cell line. J Immunol. 1991 Feb 15;146(4):1175–1183. [PubMed] [Google Scholar]
  32. Salmon M., Kitas G. D., Bacon P. A. Production of lymphokine mRNA by CD45R+ and CD45R- helper T cells from human peripheral blood and by human CD4+ T cell clones. J Immunol. 1989 Aug 1;143(3):907–912. [PubMed] [Google Scholar]
  33. Schuler W., Weiler I. J., Schuler A., Phillips R. A., Rosenberg N., Mak T. W., Kearney J. F., Perry R. P., Bosma M. J. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell. 1986 Sep 26;46(7):963–972. doi: 10.1016/0092-8674(86)90695-1. [DOI] [PubMed] [Google Scholar]
  34. Smith C. I., Abedi M. R., Islam K. B., Johansson M. E., Christensson B., Hammarström L. Humoral immunity in scid mice reconstituted with cells from immunoglobulin-deficient or normal humans. Immunol Rev. 1991 Dec;124:113–138. doi: 10.1111/j.1600-065x.1991.tb00619.x. [DOI] [PubMed] [Google Scholar]
  35. Takahashi H., Nakada T., Puisieux I. Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice. Science. 1993 Mar 5;259(5100):1460–1463. doi: 10.1126/science.8451642. [DOI] [PubMed] [Google Scholar]
  36. Tary-Lehmann M., Saxon A. Human mature T cells that are anergic in vivo prevail in SCID mice reconstituted with human peripheral blood. J Exp Med. 1992 Feb 1;175(2):503–516. doi: 10.1084/jem.175.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsoi M. S., Aprile J., Dobbs S., Goehle S., Storb R. Enrichment (and depletion) of human suppressor cells with monoclonal antibodies and immunoglobulin-coated plates. J Immunol Methods. 1982 Sep 30;53(3):293–305. doi: 10.1016/0022-1759(82)90176-4. [DOI] [PubMed] [Google Scholar]
  38. Ueno Y., Ichihara T., Hasui M., Maruyama H., Miyawaki T., Taniguchi N., Komiyama A. T-cell-dependent production of IgG by human cord blood B cells in reconstituted SCID mice. Scand J Immunol. 1992 Apr;35(4):415–419. doi: 10.1111/j.1365-3083.1992.tb02876.x. [DOI] [PubMed] [Google Scholar]
  39. Wheeler K., Pound J. D., Gordon J., Jefferis R. Engagement of CD40 lowers the threshold for activation of resting B cells via antigen receptor. Eur J Immunol. 1993 May;23(5):1165–1168. doi: 10.1002/eji.1830230528. [DOI] [PubMed] [Google Scholar]
  40. Williams S. S., Umemoto T., Kida H., Repasky E. A., Bankert R. B. Engraftment of human peripheral blood leukocytes into severe combined immunodeficient mice results in the long term and dynamic production of human xenoreactive antibodies. J Immunol. 1992 Oct 15;149(8):2830–2836. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES