Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1979 Aug;8(2):125–134. doi: 10.1111/j.1365-2125.1979.tb05810.x

Changes in cardiac glycoside receptor sites, 86rubidium uptake and intracellular sodium concentrations in the erythrocytes of patients receiving digoxin during the early phases of treatment of cardiac failure in regular rhythm and of atrial fibrillation.

A R Ford, J K Aronson, D G Grahame-Smith, J G Carver
PMCID: PMC1429772  PMID: 486289

Abstract

1 Measurements of the binding of 12-alpha-[3H]-digoxin to the membranes of intact erythrocytes, erythrocytic 86rubidium uptake and intraerythrocytic sodium concentrations have been made in the red cells of patients receiving digoxin in the short-term for atrial fibrillation or cardiac failure in regular rhythm. 2 During the first few days of treatment [3H]-digoxin binding and 86rubidium uptake fall and intraerythrocytic sodium concentrations rise. 3 Subsequently parallel fluctuations occur in [3H]-digoxin binding and 86rubidium uptake but not in intraerythrocytic sodium concentrations and the significance of the fluctuations is discussed. 4 The values of all three measurements correlate significantly with the response of the heart in sinus rhythm as measured by QS2I. 5 Plasma digoxin concentrations do not correlate with QS2I.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. C., Entman M. L., Schwartz A. The nature of the transport adenosine triphosphatase-digitalis complex. VIII. The relationship between in vivo-formed (3-H-ouabain-Na+, K+-adenosine triphosphatase) complex and ouabain-induced positive inotropism. J Pharmacol Exp Ther. 1975 Jan;192(1):105–112. [PubMed] [Google Scholar]
  2. Aronson J. K., Grahame-Smith D. G., Hallis K. F., Hibble A., Wigley F. Monitoring digoxin therapy: I. Plasma concentrations and an in vitro assay of tissue response. Br J Clin Pharmacol. 1977 Apr;4(2):213–221. doi: 10.1111/j.1365-2125.1977.tb00697.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Astrup J. The effect of hypokalaemia and of digoxin therapy on red cell sodium and potassium content. Some clinical aspects. Scand J Clin Lab Invest. 1974 Feb;33(1):11–16. doi: 10.3109/00365517409114191. [DOI] [PubMed] [Google Scholar]
  4. Beilin L. J., Knight G. J., Munro-Faure A. D., Anderson J. The sodium, potassium, and water contents of red blood cells of healthy human adults. J Clin Invest. 1966 Nov;45(11):1817–1825. doi: 10.1172/JCI105485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brubakk O., Overskeid K. Systolic time intervals in acute myocardial infarction. Acta Med Scand. 1976;199(1-2):33–40. doi: 10.1111/j.0954-6820.1976.tb06688.x. [DOI] [PubMed] [Google Scholar]
  6. CLIFFORD T. C., BEAUTYMAN W. Changes in the erythrocyte potassium in patients with cardiac failure treated with digitalis. Clin Chem. 1958 Aug;4(4):311–315. [PubMed] [Google Scholar]
  7. Erdmann E., Hasse W. Quantitative aspects of ouabain binding to human erythrocyte and cardiac membranes. J Physiol. 1975 Oct;251(3):671–682. doi: 10.1113/jphysiol.1975.sp011115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forester W., Lewis R. P., Weissler A. M., Wilke T. A. The onset and magnitude of the contractile response to commonly used digitalis glycosides in normal subjects. Circulation. 1974 Mar;49(3):517–521. doi: 10.1161/01.cir.49.3.517. [DOI] [PubMed] [Google Scholar]
  9. Funder J., Wieth J. O. Combined effects of digitalis therapy and of plasma bicarbonate on human red cell socium and potassium. Scand J Clin Lab Invest. 1974 Oct;34(2):153–160. [PubMed] [Google Scholar]
  10. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  11. Kettlewell M., Nowers A., White R. Effect of digoxin on human red blood cell electrolytes. Br J Pharmacol. 1972 Jan;44(1):165–167. doi: 10.1111/j.1476-5381.1972.tb07250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOVE W. D., BURCH G. E. A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro. J Lab Clin Med. 1953 Mar;41(3):351–362. [PubMed] [Google Scholar]
  13. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  14. Schwartz A. Is the cell membrane Na+, K+ -ATPase enzyme system the pharmacological receptor for digitalis? Circ Res. 1976 Jul;39(1):1–7. doi: 10.1161/01.res.39.1.1. [DOI] [PubMed] [Google Scholar]
  15. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  16. Smith T. W., Butler V. P., Jr, Haber E. Determination of therapeutic and toxic serum digoxin concentrations by radioimmunoassay. N Engl J Med. 1969 Nov 27;281(22):1212–1216. doi: 10.1056/NEJM196911272812203. [DOI] [PubMed] [Google Scholar]
  17. Weissler A. M., Schoenfeld C. D. Effect of digitalis on systolic time intervals in heart failure. Am J Med Sci. 1970 Jan;259(1):4–20. doi: 10.1097/00000441-197001000-00002. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES