Abstract
Electron spin resonance (ESR) spectra of spin-labeled human erythrocytes in shear flow are simulated to derive semi-empirical relations of the ESR spectral change with deformation and orientation of the cells by using a modified theoretical model developed for deformation and orientation of liquid drops. The six observed spectra at different shear stress values were simultaneously simulated by adjusting only two parameters. One parameter can be related to the ratio of the internal to the external viscosity, and the other to the elastic property of the cell membrane. From these results we have derived a semi-empirical relationship between the average deformation index or the orientation angle with a spectral measure, which characterizes the spectral shape change induced by shear stress. Thus, it becomes possible to obtain improved quantitative information on the rheological behavior of red blood cells by using the spin-label ESR method.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bitbol M., Leterrier F. Measurement of the erythrocyte orientation in a flow by spin labeling. Biorheology. 1982;19(6):669–680. doi: 10.3233/bir-1982-19601. [DOI] [PubMed] [Google Scholar]
- Chien S., Usami S., Bertles J. F. Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest. 1970 Apr;49(4):623–634. doi: 10.1172/JCI106273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cokelet G. R., Meiselman H. J. Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science. 1968 Oct 11;162(3850):275–277. doi: 10.1126/science.162.3850.275. [DOI] [PubMed] [Google Scholar]
- Fischer T. M., Haest C. W., Stöhr M., Kamp D., Deuticke B. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity. Biochim Biophys Acta. 1978 Jul 4;510(2):270–282. doi: 10.1016/0005-2736(78)90027-5. [DOI] [PubMed] [Google Scholar]
- Fung Y. C., Tong P. Theory of the sphering of red blood cells. Biophys J. 1968 Feb;8(2):175–198. doi: 10.1016/S0006-3495(68)86484-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsmith H. L. Deformation of human red cells in tube flow. Biorheology. 1971 May;7(4):235–242. doi: 10.3233/bir-1971-7407. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Buxbaum K. L., Evans E. A. Temperature dependence of the viscoelastic recovery of red cell membrane. Biophys J. 1980 Jan;29(1):177–182. doi: 10.1016/S0006-3495(80)85124-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kholeif I. A., Weymann H. D. Motion of a single red blood cell in plane shear flow. Biorheology. 1974 Sep;11(5):337–348. doi: 10.3233/bir-1974-11505. [DOI] [PubMed] [Google Scholar]
- Kon K., Noji S., Kon H. Spin label study of erythrocyte deformability. III. Further characterizations of electron spin resonance spectral change in shear flow. Blood Cells. 1983;9(3):427–441. [PubMed] [Google Scholar]
- Mohandas N., Clark M. R., Jacobs M. S., Shohet S. B. Analysis of factors regulating erythrocyte deformability. J Clin Invest. 1980 Sep;66(3):563–573. doi: 10.1172/JCI109888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noji S., Inoue F., Kon H. Spin label study of erythrocyte deformability I. Electron spin resonance spectral change under shear flow. Blood Cells. 1981;7(2):401–415. [PubMed] [Google Scholar]
- Noji S., Inoue F., Kon H. Use of spin label and the flow-induced ESR spectral difference for studying erythrocyte deformation. J Biochem Biophys Methods. 1981 Dec;5(5):251–258. doi: 10.1016/0165-022x(81)90035-x. [DOI] [PubMed] [Google Scholar]
- Sutera S. P., Mehrjardi M. H. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J. 1975 Jan;15(1):1–10. doi: 10.1016/S0006-3495(75)85787-0. [DOI] [PMC free article] [PubMed] [Google Scholar]