Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 May;45(5):1007–1016. doi: 10.1016/S0006-3495(84)84246-0

Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter.

R L Lieber, Y Yeh, R J Baskin
PMCID: PMC1434983  PMID: 6610443

Abstract

An experimental and theoretical analysis is presented involving the effect of variation in fiber and beam diameter upon the determination of average sarcomere length in isolated single muscle fibers using laser light diffraction. The muscle diffraction phenomenon is simplified by first considering diffraction order position and intensity to be the result of grating and Bragg diffraction. It is the product of the intensity profiles, which results from these types of diffraction, that produces the diffracted order. These simplifying assumptions are then extended to the case of the real muscle. Based on these considerations and the theory that we recently presented, conditions are set forth under which grating information (i.e., sarcomere length) can be maximally expressed to yield accurate average sarcomere length values.

Full text

PDF
1014

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin R. J., Lieber R. L., Oba T., Yeh Y. Intensity of light diffraction from striated muscle as a function of incident angle. Biophys J. 1981 Dec;36(3):759–773. doi: 10.1016/S0006-3495(81)84764-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baskin R. J., Roos K. P., Yeh Y. Light diffraction study of single skeletal muscle fibres. Biophys J. 1979 Oct;28(1):45–64. doi: 10.1016/S0006-3495(79)85158-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borejdo J., Mason P. Sarcomere length changes during stimulation of frog semitendinosus muscle. J Mechanochem Cell Motil. 1976 Mar;3(3):155–161. [PubMed] [Google Scholar]
  4. Cleworth D. R., Edman K. A. Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol. 1972 Dec;227(1):1–17. doi: 10.1113/jphysiol.1972.sp010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edman K. A. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand. 1980 May;109(1):15–26. doi: 10.1111/j.1748-1716.1980.tb06559.x. [DOI] [PubMed] [Google Scholar]
  6. Edman K. A. The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J Physiol. 1966 Mar;183(2):407–417. doi: 10.1113/jphysiol.1966.sp007873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flitney F. W., Hirst D. G. Cross-bridge detachment and sarcomere 'give' during stretch of active frog's muscle. J Physiol. 1978 Mar;276:449–465. doi: 10.1113/jphysiol.1978.sp012246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Judy M. M., Summerour V., LeConey T., Roa R. L., Templeton G. H. Muscle diffraction theory. Relationship between diffraction subpeaks and discrete sarcomere length distributions. Biophys J. 1982 Feb;37(2):475–487. doi: 10.1016/S0006-3495(82)84694-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawai M., Kuntz I. D. Optical diffraction studies of muscle fibers. Biophys J. 1973 Sep;13(9):857–876. doi: 10.1016/S0006-3495(73)86031-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leung A. F., Hwang J. C., Cheung Y. M. Determination of myofibrillar diameter by light diffractometry. Pflugers Arch. 1983 Mar 1;396(3):238–242. doi: 10.1007/BF00587861. [DOI] [PubMed] [Google Scholar]
  12. Lieber R. L., Baskin R. J. Direct memory access of diffraction patterns from striated muscle--a software view. Comput Programs Biomed. 1981 Mar-Jun;13(1-2):27–31. doi: 10.1016/0010-468x(81)90081-7. [DOI] [PubMed] [Google Scholar]
  13. Magid A., Reedy M. K. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method. Biophys J. 1980 Apr;30(1):27–40. doi: 10.1016/S0006-3495(80)85074-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moss R. L., Halpern W. Elastic and viscous properties of resting frog skeletal muscle. Biophys J. 1977 Mar;17(3):213–228. doi: 10.1016/S0006-3495(77)85651-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oba T., Baskin R. J., Lieber R. L. Light diffraction studies of active muscles fibres as a function of sarcomere length. J Muscle Res Cell Motil. 1981 Jun;2(2):215–224. doi: 10.1007/BF00711871. [DOI] [PubMed] [Google Scholar]
  16. Paolini P. J., Sabbadini R., Roos K. P., Baskin R. J. Sarcomere length dispersion in single skeletal muscle fibers and fiber bundles. Biophys J. 1976 Aug;16(8):919–930. doi: 10.1016/S0006-3495(76)85742-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roos K. P., Baskin R. J., Lieber R. L., Cline J. W., Paolini P. J. Digital data acquisition and analysis of striated muscle diffraction patterns with a direct memory access microprocessor system. Rev Sci Instrum. 1980 Jun;51(6):762–767. doi: 10.1063/1.1136308. [DOI] [PubMed] [Google Scholar]
  18. Rüdel R., Zite-Ferenczy F. Do laser diffraction studies on striated muscle indicate stepwise sarcomere shortening? Nature. 1979 Apr 5;278(5704):573–575. doi: 10.1038/278573a0. [DOI] [PubMed] [Google Scholar]
  19. Rüdel R., Zite-Ferenczy F. Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins. J Physiol. 1979 May;290(2):317–330. doi: 10.1113/jphysiol.1979.sp012773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schoenberg M., Wells J. B., Podolsky R. J. Muscle compliance and the longitudinal transmission of mechanical impulses. J Gen Physiol. 1974 Dec;64(6):623–642. doi: 10.1085/jgp.64.6.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tameyasu T., Ishide N., Pollack G. H. Discrete sarcomere length distribution in skeletal muscle. Biophys J. 1982 Feb;37(2):489–492. doi: 10.1016/S0006-3495(82)84695-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walcott B., Dewey M. M. Length-tension relation in Limulus striated muscle. J Cell Biol. 1980 Oct;87(1):204–208. doi: 10.1083/jcb.87.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yeh Y., Baskin R. J., Lieber R. L., Roos K. P. Theory of light diffraction by single skeletal muscle fibers. Biophys J. 1980 Mar;29(3):509–522. doi: 10.1016/S0006-3495(80)85149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zite-Ferenczy F., Rüdel R. A diffractometer using a lateral effect photodiode for the rapid determination of sarcomere length changes in cross-striated muscle. Pflugers Arch. 1978 Apr 25;374(1):97–100. doi: 10.1007/BF00585702. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES