Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Mar;47(3):395–410. doi: 10.1016/S0006-3495(85)83931-X

Digitized precision measurements of the movements of sea urchin sperm flagella.

R Rikmenspoel, C A Isles
PMCID: PMC1435215  PMID: 3978210

Abstract

High speed cinemicrographs were made of sea urchin sperm at temperatures varying from 22 to 6 degrees C. Apparatus, combining a television camera and a video digitizer, was constructed to scan individual flagellar images and to digitize the flagellar waveforms. With appropriate smoothing and averaging procedures, the rough data were condensed by a microcomputer into the coordinates of 20 points along a flagellum, spaced 2 microns apart. The curvature of the flagellum at these points was also computed. The coordinates of the flagellar positions were obtained to an accuracy of approximately +/- 0.1 micron, flagellar curvature to an accuracy of approximately +/- 50 cm-1. At all temperatures the amplitude of the flagella was found to vary with time in a purely sinusoidal fashion to within +/- 2%. The local curvature of the flagella had basically a purely sinusoidal time course to within +/- 50 cm-1, but a varying amount of asymmetry was present in the distal and the proximal ends of the flagella. This asymmetry in the curvature was related to the radius of the circular path of the sperm. The flagellar waveforms can probably be summarized in simple algebraic functions.

Full text

PDF
396

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J. 1972 May;12(5):564–586. doi: 10.1016/S0006-3495(72)86104-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brokaw C. J. Effects of increased viscosity on the movements of some invertebrate spermatozoa. J Exp Biol. 1966 Aug;45(1):113–139. doi: 10.1242/jeb.45.1.113. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J., Rintala D. R. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. J Mechanochem Cell Motil. 1975;3(2):77–86. [PubMed] [Google Scholar]
  4. Coakley C. J., Holwill M. E. Effects of pressure and temperature changes on the flagellar movement of crithidia oncopelti. J Exp Biol. 1974 Jun;60(3):605–629. doi: 10.1242/jeb.60.3.605. [DOI] [PubMed] [Google Scholar]
  5. Cosson M. P., Tang W. J., Gibbons I. R. Modification of flagellar waveform and adenosine triphosphatase activity in reactivated sea-urchin sperm treated with N-ethylmaleimide. J Cell Sci. 1983 Mar;60:231–249. doi: 10.1242/jcs.60.1.231. [DOI] [PubMed] [Google Scholar]
  6. Gibbons B. H., Gibbons I. R. Lithium reversibly inhibits microtubule-based motility in sperm flagella. Nature. 1984 Jun 7;309(5968):560–562. doi: 10.1038/309560a0. [DOI] [PubMed] [Google Scholar]
  7. Gibbons I. R., Gibbons B. H. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters. J Muscle Res Cell Motil. 1980 Mar;1(1):31–59. doi: 10.1007/BF00711924. [DOI] [PubMed] [Google Scholar]
  8. Goldstein S. F. Starting transients in sea urchin sperm flagella. J Cell Biol. 1979 Jan;80(1):61–68. doi: 10.1083/jcb.80.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  10. Hines M., Blum J. J. Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophys J. 1978 Jul;23(1):41–57. doi: 10.1016/S0006-3495(78)85431-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hines M., Blum J. J. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys J. 1979 Mar;25(3):421–441. doi: 10.1016/S0006-3495(79)85313-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lubliner J., Blum J. J. Model for bend propagation in flagella. J Theor Biol. 1971 Apr;31(1):1–24. doi: 10.1016/0022-5193(71)90117-2. [DOI] [PubMed] [Google Scholar]
  13. Okuno M., Brokaw C. J. Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4-, ADP and P1. J Cell Sci. 1979 Aug;38:105–123. doi: 10.1242/jcs.38.1.105. [DOI] [PubMed] [Google Scholar]
  14. Pringle J. W. The contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol. 1967;17:1–60. doi: 10.1016/0079-6107(67)90003-x. [DOI] [PubMed] [Google Scholar]
  15. Rikmenspoel R. Ciliary contractile model applied to sperm flagellar motion. J Theor Biol. 1982 Jun 21;96(4):617–645. doi: 10.1016/0022-5193(82)90234-x. [DOI] [PubMed] [Google Scholar]
  16. Rikmenspoel R. Contractile events in the cilia of Paramecium, Opalina, Mytilus, and Phragmatopoma. Biophys J. 1976 May;16(5):445–470. doi: 10.1016/S0006-3495(76)85701-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rikmenspoel R. Contractile mechanisms in flagella. Biophys J. 1971 May;11(5):446–463. doi: 10.1016/S0006-3495(71)86227-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rikmenspoel R. Elastic properties of the sea urchin sperm flagellum. Biophys J. 2008 Dec 31;6(4):471–479. doi: 10.1016/S0006-3495(66)86670-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rikmenspoel R. Movement of sea urchin sperm flagella. J Cell Biol. 1978 Feb;76(2):310–322. doi: 10.1083/jcb.76.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rikmenspoel R., Rudd W. G. The contractile mechanism in cilia. Biophys J. 1973 Sep;13(9):955–993. doi: 10.1016/S0006-3495(73)86037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rikmenspoel R. The equation of motion for sperm flagella. Biophys J. 1978 Aug;23(2):177–206. doi: 10.1016/S0006-3495(78)85442-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yano Y., Miki-Noumura T. Sliding velocity between outer doublet microtubules of sea-urchin sperm axonemes. J Cell Sci. 1980 Aug;44:169–186. doi: 10.1242/jcs.44.1.169. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES