Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Dec;10(12):2005–2017. doi: 10.1105/tpc.10.12.2005

Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings.

H H Zhong 1, J E Painter 1, P A Salomé 1, M Straume 1, C R McClung 1
PMCID: PMC143968  PMID: 9836741

Abstract

Circadian rhythms in the abundance of the CAT2 catalase mRNA were not seen in etiolated seedlings but developed upon illumination. These circadian oscillations were preceded by a rapid and transient induction of CAT2 mRNA abundance that varied strikingly according to the timing (circadian phase) of the onset of illumination. This variation oscillated with a circadian periodicity of approximately 28 hr, indicating that the circadian oscillator is running in etiolated seedlings and regulates (gates) the induction of CAT2 by light. Moreover, because we assayed populations of seedlings, we infer that the individual clocks among populations of etiolated seedlings were synchronized before the onset of illumination. What developmental or environmental signals synchronized the clocks among seedlings? Varying the phase of the onset of illumination relative to release from stratification failed to affect the acute induction of CAT2, indicating that the temperature step from 4 to 22 degrees C associated with release from stratification did not reset the circadian clock. However, the acute induction of CAT2 mRNA varied with time after imbibition, demonstrating that imbibition provides a signal capable of resetting the circadian clock and of synchronizing the clocks among populations of seedlings.

Full Text

The Full Text of this article is available as a PDF (361.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASCHOFF J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:11–28. doi: 10.1101/sqb.1960.025.01.004. [DOI] [PubMed] [Google Scholar]
  2. Acevedo A., Williamson J. D., Scandalios J. G. Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics. 1991 Mar;127(3):601–607. doi: 10.1093/genetics/127.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson S. L., Teakle G. R., Martino-Catt S. J., Kay S. A. Circadian clock- and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. Plant J. 1994 Oct;6(4):457–470. doi: 10.1046/j.1365-313x.1994.6040457.x. [DOI] [PubMed] [Google Scholar]
  4. Beator J., Kloppstech K. The Circadian Oscillator Coordinates the Synthesis of Apoproteins and Their Pigments during Chloroplast Development. Plant Physiol. 1993 Sep;103(1):191–196. doi: 10.1104/pp.103.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beator J., Pötter E., Kloppstech K. The effect of heat shock on morphogenesis in barley : coordinated circadian regulation of mRNA levels for light-regulated genes and of the capacity for accumulation of chlorophyll protein complexes. Plant Physiol. 1992 Dec;100(4):1780–1786. doi: 10.1104/pp.100.4.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryant T. R. Gas exchange in dry seeds: circadian rhythmicity in the absence of DNA replication, transcription, and translation. Science. 1972 Nov 10;178(4061):634–636. doi: 10.1126/science.178.4061.634. [DOI] [PubMed] [Google Scholar]
  7. Dunlap J. C. Genetics and molecular analysis of circadian rhythms. Annu Rev Genet. 1996;30:579–601. doi: 10.1146/annurev.genet.30.1.579. [DOI] [PubMed] [Google Scholar]
  8. Frugoli J. A., Zhong H. H., Nuccio M. L., McCourt P., McPeek M. A., Thomas T. L., McClung C. R. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Sep;112(1):327–336. doi: 10.1104/pp.112.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golden Susan S., Ishiura Masahiro, Johnson Carl Hirschie, Kondo Takao. CYANOBACTERIAL CIRCADIAN RHYTHMS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):327–354. doi: 10.1146/annurev.arplant.48.1.327. [DOI] [PubMed] [Google Scholar]
  10. Heintzen C., Melzer S., Fischer R., Kappeler S., Apel K., Staiger D. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J. 1994 Jun;5(6):799–813. doi: 10.1046/j.1365-313x.1994.5060799.x. [DOI] [PubMed] [Google Scholar]
  11. Kim Y., Zhang H., Scholl R. L. Two evolutionarily divergent genes encode a cytoplasmic ribosomal protein of Arabidopsis thaliana. Gene. 1990 Sep 14;93(2):177–182. doi: 10.1016/0378-1119(90)90222-d. [DOI] [PubMed] [Google Scholar]
  12. Kloppstech K., Otto B., Sierralta W. Cyclic temperature treatments of dark-grown pea seedlings induce a rise in specific transcript levels of light-regulated genes related to photomorphogenesis. Mol Gen Genet. 1991 Mar;225(3):468–473. doi: 10.1007/BF00261689. [DOI] [PubMed] [Google Scholar]
  13. Kolar C., Adám E., Schäfer E., Nagy F. Expression of tobacco genes for light-harvesting chlorophyll a/b binding proteins of photosystem II is controlled by two circadian oscillators in a developmentally regulated fashion. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2174–2178. doi: 10.1073/pnas.92.6.2174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolar C., Fejes E., Adám E., Schäfer E., Kay S., Nagy F. Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant J. 1998 Feb;13(4):563–569. doi: 10.1046/j.1365-313x.1998.00048.x. [DOI] [PubMed] [Google Scholar]
  15. Kreps J. A., Kay S. A. Coordination of Plant Metabolism and Development by the Circadian Clock. Plant Cell. 1997 Jul;9(7):1235–1244. doi: 10.1105/tpc.9.7.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kreps J. A., Simon A. E. Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis. Plant Cell. 1997 Mar;9(3):297–304. doi: 10.1105/tpc.9.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martino-Catt S., Ort D. R. Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3731–3735. doi: 10.1073/pnas.89.9.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McClung C. R. Regulation of catalases in Arabidopsis. Free Radic Biol Med. 1997;23(3):489–496. doi: 10.1016/s0891-5849(97)00109-3. [DOI] [PubMed] [Google Scholar]
  19. Millar A. J., Kay S. A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15491–15496. doi: 10.1073/pnas.93.26.15491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Millar A. J., Short S. R., Chua N. H., Kay S. A. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell. 1992 Sep;4(9):1075–1087. doi: 10.1105/tpc.4.9.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Millar A. J., Straume M., Chory J., Chua N. H., Kay S. A. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science. 1995 Feb 24;267(5201):1163–1166. doi: 10.1126/science.7855596. [DOI] [PubMed] [Google Scholar]
  22. Nagy F., Fejes E., Wehmeyer B., Dallman G., Schafer E. The circadian oscillator is regulated by a very low fluence response of phytochrome in wheat. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6290–6294. doi: 10.1073/pnas.90.13.6290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paulsen H., Bogorad L. Diurnal and Circadian Rhythms in the Accumulation and Synthesis of mRNA for the Light-Harvesting Chlorophyll a/b-Binding Protein in Tobacco. Plant Physiol. 1988 Dec;88(4):1104–1109. doi: 10.1104/pp.88.4.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pilgrim M. L., McClung C. R. Differential Involvement of the Circadian Clock in the Expression of Genes Required for Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Synthesis, Assembly, and Activation in Arabidopsis thaliana. Plant Physiol. 1993 Oct;103(2):553–564. doi: 10.1104/pp.103.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plautz J. D., Straume M., Stanewsky R., Jamison C. F., Brandes C., Dowse H. B., Hall J. C., Kay S. A. Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms. 1997 Jun;12(3):204–217. doi: 10.1177/074873049701200302. [DOI] [PubMed] [Google Scholar]
  26. Power J. M., Ringo J. M., Dowse H. B. The effects of period mutations and light on the activity rhythms of Drosophila melanogaster. J Biol Rhythms. 1995 Sep;10(3):267–280. doi: 10.1177/074873049501000309. [DOI] [PubMed] [Google Scholar]
  27. Power J., Ringo J., Dowse H. The role of light in the initiation of circadian activity rhythms of adult Drosophila melanogaster. J Neurogenet. 1995 Feb;9(4):227–238. doi: 10.3109/01677069509084159. [DOI] [PubMed] [Google Scholar]
  28. Redinbaugh M. G., Sabre M., Scandalios J. G. Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6853–6857. doi: 10.1073/pnas.87.17.6853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reimmann C., Dudler R. Circadian rhythmicity in the expression of a novel light-regulated rice gene. Plant Mol Biol. 1993 Apr;22(1):165–170. doi: 10.1007/BF00039006. [DOI] [PubMed] [Google Scholar]
  30. Richards E. J., Goodman H. M., Ausubel F. M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 1991 Jun 25;19(12):3351–3357. doi: 10.1093/nar/19.12.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sehgal A., Price J., Young M. W. Ontogeny of a biological clock in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1423–1427. doi: 10.1073/pnas.89.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Somers D. E., Webb A. A., Pearson M., Kay S. A. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development. 1998 Feb;125(3):485–494. doi: 10.1242/dev.125.3.485. [DOI] [PubMed] [Google Scholar]
  33. Tavladoraki P., Kloppstech K., Argyroudi-Akoyunoglou J. Circadian Rhythm in the Expression of the mRNA Coding for the Apoprotein of the Light-Harvesting Complex of Photosystem II : Phytochrome Control and Persistent Far Red Reversibility. Plant Physiol. 1989 Jun;90(2):665–672. doi: 10.1104/pp.90.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wehmeyer B., Cashmore A. R., Schäfer E. Photocontrol of the Expression of Genes Encoding Chlorophyll a/b Binding Proteins and Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase in Etiolated Seedlings of Lycopersicon esculentum (L.) and Nicotiana tabacum (L.). Plant Physiol. 1990 Jul;93(3):990–997. doi: 10.1104/pp.93.3.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhong H. H., McClung C. R. The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet. 1996 May 23;251(2):196–203. doi: 10.1007/BF02172918. [DOI] [PubMed] [Google Scholar]
  36. Zhong H. H., Resnick A. S., Straume M., Robertson McClung C. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell. 1997 Jun;9(6):947–955. doi: 10.1105/tpc.9.6.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhong H. H., Young J. C., Pease E. A., Hangarter R. P., McClung C. R. Interactions between Light and the Circadian Clock in the Regulation of CAT2 Expression in Arabidopsis. Plant Physiol. 1994 Mar;104(3):889–898. doi: 10.1104/pp.104.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES