Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Apr;10(4):539–556. doi: 10.1105/tpc.10.4.539

The organization and evolution of the spinach stress 70 molecular chaperone gene family.

C L Guy 1, Q B Li 1
PMCID: PMC144010  PMID: 9548981

Abstract

The stress 70 molecular chaperones of plants are localized and function in all of the major subcellular compartments of the cell. Collectively, all of the various forms are encoded by a multigene family in the nucleus. At least 12 members of this family have been found, and sequence and DNA blot analyses provide an emerging description of the diversity of gene structure organization for this family of evolutionarily conserved proteins in spinach. They exhibit not only structural diversity in the organization of coding and noncoding regions but also distinct expression patterns for different tissues and abiotic conditions. The results of phylogenetic analyses are concordant with at least four major evolutionary events that gave rise to stress 70 molecular chaperones in each of four major subcellular compartments of plant cells: the plastid, mitochondrion, cytoplasm, and endoplasmic reticulum. The varied expression patterns also illustrate the complexity of effectively interpreting the role of any one of these stress-related proteins in response to abiotic stress in the absence of context to the other members of the family.

Full Text

The Full Text of this article is available as a PDF (835.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahsen, Pfanner Molecular chaperones: towards a characterization of the heat-shock protein 70 family. Trends Cell Biol. 1997 Mar;7(3):129–133. doi: 10.1016/S0962-8924(96)10056-8. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. V., Li Q. B., Haskell D. W., Guy C. L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 1994 Apr;104(4):1359–1370. doi: 10.1104/pp.104.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bardwell J. C., Craig E. A. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci U S A. 1984 Feb;81(3):848–852. doi: 10.1073/pnas.81.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bates E. E., Vergne P., Dumas C. Analysis of the cytosolic hsp70 gene family in Zea mays. Plant Mol Biol. 1994 Aug;25(5):909–916. doi: 10.1007/BF00028885. [DOI] [PubMed] [Google Scholar]
  6. Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. doi: 10.1007/BF00175490. [DOI] [PubMed] [Google Scholar]
  7. Bui E. T., Bradley P. J., Johnson P. J. A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9651–9656. doi: 10.1073/pnas.93.18.9651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corpas F. J., Trelease R. N. The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur J Cell Biol. 1997 May;73(1):49–57. [PubMed] [Google Scholar]
  9. Craig E. A., Ingolia T. D., Manseau L. J. Expression of Drosophila heat-shock cognate genes during heat shock and development. Dev Biol. 1983 Oct;99(2):418–426. doi: 10.1016/0012-1606(83)90291-9. [DOI] [PubMed] [Google Scholar]
  10. Craig E. A., Jacobsen K. Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol Cell Biol. 1985 Dec;5(12):3517–3524. doi: 10.1128/mcb.5.12.3517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curtis S. E., Clegg M. T. Molecular evolution of chloroplast DNA sequences. Mol Biol Evol. 1984 Jul;1(4):291–301. doi: 10.1093/oxfordjournals.molbev.a040319. [DOI] [PubMed] [Google Scholar]
  12. DeRocher A., Vierling E. Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol Biol. 1995 Feb;27(3):441–456. doi: 10.1007/BF00019312. [DOI] [PubMed] [Google Scholar]
  13. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dhankher O. P., Drew J. E., Gatehouse J. A. Characterisation of a pea hsp70 gene which is both developmentally and stress-regulated. Plant Mol Biol. 1997 May;34(2):345–352. doi: 10.1023/a:1005804612280. [DOI] [PubMed] [Google Scholar]
  15. Drzymalla C., Schroda M., Beck C. F. Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. Plant Mol Biol. 1996 Sep;31(6):1185–1194. doi: 10.1007/BF00040835. [DOI] [PubMed] [Google Scholar]
  16. Duck N., McCormick S., Winter J. Heat shock protein hsp70 cognate gene expression in vegetative and reproductive organs of Lycopersicon esculentum. Proc Natl Acad Sci U S A. 1989 May;86(10):3674–3678. doi: 10.1073/pnas.86.10.3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ellis R. J. The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):257–261. doi: 10.1098/rstb.1993.0023. [DOI] [PubMed] [Google Scholar]
  18. Flaherty K. M., DeLuca-Flaherty C., McKay D. B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature. 1990 Aug 16;346(6285):623–628. doi: 10.1038/346623a0. [DOI] [PubMed] [Google Scholar]
  19. Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
  20. Gaut B. S., Morton B. R., McCaig B. C., Clegg M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274–10279. doi: 10.1073/pnas.93.19.10274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gavel Y., von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990 Oct;4(1):33–37. doi: 10.1093/protein/4.1.33. [DOI] [PubMed] [Google Scholar]
  22. Gupta R. S., Aitken K., Falah M., Singh B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2895–2899. doi: 10.1073/pnas.91.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gupta R. S., Golding G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993 Dec;37(6):573–582. doi: 10.1007/BF00182743. [DOI] [PubMed] [Google Scholar]
  24. Guy C. L., Haskell D. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 1987 Jul;84(3):872–878. doi: 10.1104/pp.84.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Günther E., Walter L. Genetic aspects of the hsp70 multigene family in vertebrates. Experientia. 1994 Nov 30;50(11-12):987–1001. doi: 10.1007/BF01923453. [DOI] [PubMed] [Google Scholar]
  26. Heschl M. F., Baillie D. L. The HSP70 multigene family of Caenorhabditis elegans. Comp Biochem Physiol B. 1990;96(4):633–637. doi: 10.1016/0305-0491(90)90206-9. [DOI] [PubMed] [Google Scholar]
  27. Hughes A. L. Nonlinear relationships among evolutionary rates identify regions of functional divergence in heat-shock protein 70 genes. Mol Biol Evol. 1993 Jan;10(1):243–255. doi: 10.1093/oxfordjournals.molbev.a039997. [DOI] [PubMed] [Google Scholar]
  28. Ingolia T. D., Craig E. A. Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc Natl Acad Sci U S A. 1982 Jan;79(2):525–529. doi: 10.1073/pnas.79.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. James P., Pfund C., Craig E. A. Functional specificity among Hsp70 molecular chaperones. Science. 1997 Jan 17;275(5298):387–389. doi: 10.1126/science.275.5298.387. [DOI] [PubMed] [Google Scholar]
  30. Joshi C. P., Kumar S., Nguyen H. T. Application of modified differential display technique for cloning and sequencing of the 3' region from three putative members of wheat HSP70 gene family. Plant Mol Biol. 1996 Feb;30(3):641–646. doi: 10.1007/BF00049338. [DOI] [PubMed] [Google Scholar]
  31. Kalinski A., Rowley D. L., Loer D. S., Foley C., Buta G., Herman E. M. Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta. 1995;195(4):611–621. doi: 10.1007/BF00195722. [DOI] [PubMed] [Google Scholar]
  32. Kawula T. H., Lelivelt M. J. Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli. J Bacteriol. 1994 Feb;176(3):610–619. doi: 10.1128/jb.176.3.610-619.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ko K., Bornemisza O., Kourtz L., Ko Z. W., Plaxton W. C., Cashmore A. R. Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. J Biol Chem. 1992 Feb 15;267(5):2986–2993. [PubMed] [Google Scholar]
  34. Kourtz L., Ko K. The early stage of chloroplast protein import involves Com70. J Biol Chem. 1997 Jan 31;272(5):2808–2813. doi: 10.1074/jbc.272.5.2808. [DOI] [PubMed] [Google Scholar]
  35. Lee J. H., Schöffl F. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet. 1996 Aug 27;252(1-2):11–19. doi: 10.1007/s004389670002. [DOI] [PubMed] [Google Scholar]
  36. Lelivelt M. J., Kawula T. H. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol. 1995 Sep;177(17):4900–4907. doi: 10.1128/jb.177.17.4900-4907.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Li Q. B., Anderson J. V., Guy C. L. A cDNA clone encoding a spinach 70-kilodalton heat-shock cognate. Plant Physiol. 1994 May;105(1):457–458. doi: 10.1104/pp.105.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Li Q. B., Guy C. L. Prolonged final extension time increases cloning efficiency of PCR products. Biotechniques. 1996 Aug;21(2):192–196. doi: 10.2144/96212bm04. [DOI] [PubMed] [Google Scholar]
  39. Liberek K., Skowyra D., Zylicz M., Johnson C., Georgopoulos C. The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J Biol Chem. 1991 Aug 5;266(22):14491–14496. [PubMed] [Google Scholar]
  40. Lin T. Y., Duck N. B., Winter J., Folk W. R. Sequences of two hsc 70 cDNAs from Lycopersicon esculentum. Plant Mol Biol. 1991 Mar;16(3):475–478. doi: 10.1007/BF00023998. [DOI] [PubMed] [Google Scholar]
  41. Marshall J. S., DeRocher A. E., Keegstra K., Vierling E. Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci U S A. 1990 Jan;87(1):374–378. doi: 10.1073/pnas.87.1.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Marshall J. S., Keegstra K. Isolation and characterization of a cDNA clone encoding the major hsp70 of the pea chloroplastic stroma. Plant Physiol. 1992 Oct;100(2):1048–1054. doi: 10.1104/pp.100.2.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Minton K. W., Karmin P., Hahn G. M., Minton A. P. Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7107–7111. doi: 10.1073/pnas.79.23.7107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moniz de Sá M., Drouin G. Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol. 1996 Nov;13(9):1198–1212. doi: 10.1093/oxfordjournals.molbev.a025685. [DOI] [PubMed] [Google Scholar]
  45. Mooney B., Harmey M. A. The occurrence of hsp70 in the outer membrane of plant mitochondria. Biochem Biophys Res Commun. 1996 Jan 5;218(1):309–313. doi: 10.1006/bbrc.1996.0054. [DOI] [PubMed] [Google Scholar]
  46. Mues G. I., Munn T. Z., Raese J. D. A human gene family with sequence homology to Drosophila melanogaster Hsp70 heat shock genes. J Biol Chem. 1986 Jan 15;261(2):874–877. [PubMed] [Google Scholar]
  47. Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  48. Neumann D., Emmermann M., Thierfelder J. M., zur Nieden U., Clericus M., Braun H. P., Nover L., Schmitz U. K. HSP68--a DnaK-like heat-stress protein of plant mitochondria. Planta. 1993;190(1):32–43. doi: 10.1007/BF00195672. [DOI] [PubMed] [Google Scholar]
  49. Neven L. G., Haskell D. W., Hofig A., Li Q. B., Guy C. L. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993 Jan;21(2):291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  50. Nover L., Scharf K. D. Heat stress proteins and transcription factors. Cell Mol Life Sci. 1997 Jan;53(1):80–103. doi: 10.1007/PL00000583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ohta T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics. 1994 Dec;138(4):1331–1337. doi: 10.1093/genetics/138.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pierpaoli E. V., Sandmeier E., Baici A., Schönfeld H. J., Gisler S., Christen P. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J Mol Biol. 1997 Jun 27;269(5):757–768. doi: 10.1006/jmbi.1997.1072. [DOI] [PubMed] [Google Scholar]
  53. Rensing S. A., Maier U. G. Phylogenetic analysis of the stress-70 protein family. J Mol Evol. 1994 Jul;39(1):80–86. doi: 10.1007/BF00178252. [DOI] [PubMed] [Google Scholar]
  54. Roberts J. K., Key J. L. Isolation and characterization of a soybean hsp70 gene. Plant Mol Biol. 1991 Apr;16(4):671–683. doi: 10.1007/BF00023431. [DOI] [PubMed] [Google Scholar]
  55. Rochester D. E., Winer J. A., Shah D. M. The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 1986 Mar;5(3):451–458. doi: 10.1002/j.1460-2075.1986.tb04233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rubin D. M., Mehta A. D., Zhu J., Shoham S., Chen X., Wells Q. R., Palter K. B. Genomic structure and sequence analysis of Drosophila melanogaster HSC70 genes. Gene. 1993 Jun 30;128(2):155–163. doi: 10.1016/0378-1119(93)90558-k. [DOI] [PubMed] [Google Scholar]
  57. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  58. Schilke B., Forster J., Davis J., James P., Walter W., Laloraya S., Johnson J., Miao B., Craig E. The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J Cell Biol. 1996 Aug;134(3):603–613. doi: 10.1083/jcb.134.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schnell D. J., Kessler F., Blobel G. Isolation of components of the chloroplast protein import machinery. Science. 1994 Nov 11;266(5187):1007–1012. doi: 10.1126/science.7973649. [DOI] [PubMed] [Google Scholar]
  60. Seaton B. L., Vickery L. E. A gene encoding a DnaK/hsp70 homolog in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2066–2070. doi: 10.1073/pnas.91.6.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Storozhenko S., De Pauw P., Kushnir S., Van Montagu M., Inzé D. Identification of an Arabidopsis thaliana cDNA encoding a HSP70-related protein belonging to the HSP110/SSE1 subfamily. FEBS Lett. 1996 Jul 15;390(1):113–118. doi: 10.1016/0014-5793(96)00640-0. [DOI] [PubMed] [Google Scholar]
  62. Tatusov R. L., Koonin E. V., Lipman D. J. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  63. Walker E. L., Weeden N. F., Taylor C. B., Green P., Coruzzi G. M. Molecular evolution of duplicate copies of genes encoding cytosolic glutamine synthetase in Pisum sativum. Plant Mol Biol. 1995 Dec;29(6):1111–1125. doi: 10.1007/BF00020456. [DOI] [PubMed] [Google Scholar]
  64. Wang H., Goffreda M., Leustek T. Characteristics of an Hsp70 homolog localized in higher plant chloroplasts that is similar to DnaK, the Hsp70 of prokaryotes. Plant Physiol. 1993 Jul;102(3):843–850. doi: 10.1104/pp.102.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Waters E. R. The molecular evolution of the small heat-shock proteins in plants. Genetics. 1995 Oct;141(2):785–795. doi: 10.1093/genetics/141.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Watts F. Z., Walters A. J., Moore A. L. Characterisation of PHSP1, a cDNA encoding a mitochondrial HSP70 from Pisum sativum. Plant Mol Biol. 1992 Jan;18(1):23–32. doi: 10.1007/BF00018453. [DOI] [PubMed] [Google Scholar]
  67. Wimmer B., Lottspeich F., van der Klei I., Veenhuis M., Gietl C. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13624–13629. doi: 10.1073/pnas.94.25.13624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wrobel R. L., OBrian G. R., Boston R. S. Comparative analysis of BiP gene expression in maize endosperm. Gene. 1997 Dec 19;204(1-2):105–113. doi: 10.1016/s0378-1119(97)00529-5. [DOI] [PubMed] [Google Scholar]
  69. Wu C. H., Caspar T., Browse J., Lindquist S., Somerville C. Characterization of an HSP70 Cognate Gene Family in Arabidopsis. Plant Physiol. 1988 Nov;88(3):731–740. doi: 10.1104/pp.88.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wu S. H., Wang C., Chen J., Lin B. L. Isolation of a cDNA encoding a 70 kDa heat-shock cognate protein expressed in vegetative tissues of Arabidopsis thaliana. Plant Mol Biol. 1994 Jun;25(3):577–583. doi: 10.1007/BF00043887. [DOI] [PubMed] [Google Scholar]
  71. Zhou J., Kleinhofs A. Molecular evolution of nitrate reductase genes. J Mol Evol. 1996 Apr;42(4):432–442. doi: 10.1007/BF02498637. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES