Abstract
The hypersensitive response (HR) of disease-resistant plant cells to fungal invasion is a rapid cell death that has some features in common with programmed cell death (apoptosis) in animals. We investigated the role of cytosolic free calcium ([Ca2+]i) in the HR of cowpea to the cowpea rust fungus. By using confocal laser scanning microscopy in conjunction with a calcium reporter dye, we found a slow, prolonged elevation of [Ca2+]i in epidermal cells of resistant but not susceptible plants as the fungus grew through the cell wall. [Ca2+]i levels declined to normal levels as the fungus entered and grew within the cell lumen. This elevation was related to the stage of fungal growth and not to the speed of initiation of subsequent cell death. Elevated [Ca2+]i levels also represent the first sign of the HR detectable in this cowpea-cowpea rust fungus system. The increase in [Ca2+]i was prevented by calcium channnel inhibitors. This effect was consistent with pharmacological tests in which these inhibitors delayed the HR. The data suggest that elevation of [Ca2+]i is involved in signal transduction leading to the HR during rust fungal infection.
Full Text
The Full Text of this article is available as a PDF (342.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell J. N., Ryder T. B., Wingate V. P., Bailey J. A., Lamb C. J. Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol Cell Biol. 1986 May;6(5):1615–1623. doi: 10.1128/mcb.6.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catterall W. A., Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci. 1992 Jun;13(6):256–262. doi: 10.1016/0165-6147(92)90079-l. [DOI] [PubMed] [Google Scholar]
- D'Silva I., Heath M. C. Purification and characterization of two novel hypersensitive response-inducing specific elicitors produced by the cowpea rust fungus. J Biol Chem. 1997 Feb 14;272(7):3924–3927. doi: 10.1074/jbc.272.7.3924. [DOI] [PubMed] [Google Scholar]
- Diliberto P. A., Wang X. F., Herman B. Confocal imaging of Ca2+ in cells. Methods Cell Biol. 1994;40:243–262. doi: 10.1016/s0091-679x(08)61117-6. [DOI] [PubMed] [Google Scholar]
- Ehrhardt D. W., Wais R., Long S. R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell. 1996 May 31;85(5):673–681. doi: 10.1016/s0092-8674(00)81234-9. [DOI] [PubMed] [Google Scholar]
- Gehring C. A., Williams D. A., Cody S. H., Parish R. W. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature. 1990 Jun 7;345:528–530. doi: 10.1038/345528a0. [DOI] [PubMed] [Google Scholar]
- Gelli A., Blumwald E. Calcium Retrieval from Vacuolar Pools (Characterization of a Vacuolar Calcium Channel). Plant Physiol. 1993 Aug;102(4):1139–1146. doi: 10.1104/pp.102.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelli A., Higgins V. J., Blumwald E. Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors. Plant Physiol. 1997 Jan;113(1):269–279. doi: 10.1104/pp.113.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilroy S., Jones R. L. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3591–3595. doi: 10.1073/pnas.89.8.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
- Hahn M. G. Microbial elicitors and their receptors in plants. Annu Rev Phytopathol. 1996;34:387–412. doi: 10.1146/annurev.phyto.34.1.387. [DOI] [PubMed] [Google Scholar]
- Knight H., Trewavas A. J., Knight M. R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell. 1996 Mar;8(3):489–503. doi: 10.1105/tpc.8.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
- Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A., Pennell R. I., Alvarez M. E., Palmer R., Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996 Apr 1;6(4):427–437. doi: 10.1016/s0960-9822(02)00510-9. [DOI] [PubMed] [Google Scholar]
- Malcolm C. S., Ritchie L., Grieve A., Griffiths R. A prototypic intracellular calcium antagonist, TMB-8, protects cultured cerebellar granule cells against the delayed, calcium-dependent component of glutamate neurotoxicity. J Neurochem. 1996 Jun;66(6):2350–2360. doi: 10.1046/j.1471-4159.1996.66062350.x. [DOI] [PubMed] [Google Scholar]
- Malho R., Trewavas A. J. Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. Plant Cell. 1996 Nov;8(11):1935–1949. doi: 10.1105/tpc.8.11.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Simon L., Lam E. Pathogen-induced programmed cell death in tobacco. J Cell Sci. 1997 Jun;110(Pt 11):1333–1344. doi: 10.1242/jcs.110.11.1333. [DOI] [PubMed] [Google Scholar]
- Palmer F. B., Byers D. M., Spence M. W., Cook H. W. Calcium-independent effects of TMB-8. Modification of phospholipid metabolism in neuroblastoma cells by inhibition of choline uptake. Biochem J. 1992 Sep 1;286(Pt 2):505–512. doi: 10.1042/bj2860505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryerson D. E., Heath M. C. Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments. Plant Cell. 1996 Mar;8(3):393–402. doi: 10.1105/tpc.8.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumaker K. S., Gizinski M. J. Cytokinin stimulates dihydropyridine-sensitive calcium uptake in moss protoplasts. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10937–10941. doi: 10.1073/pnas.90.23.10937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showalter A. M., Bell J. N., Cramer C. L., Bailey J. A., Varner J. E., Lamb C. J. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6551–6555. doi: 10.1073/pnas.82.19.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinclair W., Oliver I., Maher P., Trewavas A. The role of calmodulin in the gravitropic response of the Arabidopsis thaliana agr-3 mutant. Planta. 1996;199(3):343–351. doi: 10.1007/BF00195725. [DOI] [PubMed] [Google Scholar]
- Singh Y. N., Lamberty M. A., Johnson A., Adam T. J. Effects of TMB-8, a putative calcium antagonist, on neuromuscular transmission and muscle contractility in the mouse phrenic nerve-hemidiaphragm preparation. Arch Int Pharmacodyn Ther. 1994 May-Jun;327(3):363–374. [PubMed] [Google Scholar]
- Tavernier E., Wendehenne D., Blein J. P., Pugin A. Involvement of Free Calcium in Action of Cryptogein, a Proteinaceous Elicitor of Hypersensitive Reaction in Tobacco Cells. Plant Physiol. 1995 Nov;109(3):1025–1031. doi: 10.1104/pp.109.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
- Ward J. M., Pei Z. M., Schroeder J. I. Roles of Ion Channels in Initiation of Signal Transduction in Higher Plants. Plant Cell. 1995 Jul;7(7):833–844. doi: 10.1105/tpc.7.7.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. A., Cody S. H., Gehring C. A., Parish R. W., Harris P. J. Confocal imaging of ionised calcium in living plant cells. Cell Calcium. 1990 Apr;11(4):291–297. doi: 10.1016/0143-4160(90)90006-g. [DOI] [PubMed] [Google Scholar]
- Xiang C., Miao Z. H., Lam E. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol. 1996 Nov;32(3):415–426. doi: 10.1007/BF00019093. [DOI] [PubMed] [Google Scholar]
- Zimmermann S., Nürnberger T., Frachisse J. M., Wirtz W., Guern J., Hedrich R., Scheel D. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2751–2755. doi: 10.1073/pnas.94.6.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]