Abstract
On the tropical legume Sesbania rostrata, stem-borne nodules develop after inoculation of adventitious root primordia with the microsymbiont Azorhizobium caulinodans. A cDNA clone, Srchi13, with homology to acidic class III chitinase genes, corresponds to an early nodulin gene with transiently induced expression during nodule ontogeny. Srchi13 transcripts accumulated strongly 2 days after inoculation, decreased from day 7 onward, and disappeared in mature nodules. Induction was dependent on Nod factor-producing bacteria. Srchi13 was expressed around infection pockets, in infection centra, around the developing nodule and its vascular bundles, and in uninfected cells of the central tissue. The specific and transient transcript accumulation together with the lipochitooligosaccharide degradation activity of the recombinant protein hint at a role of Srchi13 in normal nodule ontogeny by limiting the action of Nod factors.
Full Text
The Full Text of this article is available as a PDF (524.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angerer L. M., Angerer R. C. Localization of mRNAs by in situ hybridization. Methods Cell Biol. 1991;35:37–71. doi: 10.1016/s0091-679x(08)60568-3. [DOI] [PubMed] [Google Scholar]
- Baron C., Zambryski P. C. The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet. 1995;29:107–129. doi: 10.1146/annurev.ge.29.120195.000543. [DOI] [PubMed] [Google Scholar]
- Collinge D. B., Kragh K. M., Mikkelsen J. D., Nielsen K. K., Rasmussen U., Vad K. Plant chitinases. Plant J. 1993 Jan;3(1):31–40. doi: 10.1046/j.1365-313x.1993.t01-1-00999.x. [DOI] [PubMed] [Google Scholar]
- Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
- De Jong A. J., Cordewener J., Lo Schiavo F., Terzi M., Vandekerckhove J., Van Kammen A., De Vries S. C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell. 1992 Apr;4(4):425–433. doi: 10.1105/tpc.4.4.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franssen H. J., Vijn I., Yang W. C., Bisseling T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol. 1992 May;19(1):89–107. doi: 10.1007/BF00015608. [DOI] [PubMed] [Google Scholar]
- Gianinazzi-Pearson V. Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis. Plant Cell. 1996 Oct;8(10):1871–1883. doi: 10.1105/tpc.8.10.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goethals K., Gao M., Tomekpe K., Van Montagu M., Holsters M. Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: nucleotide sequence and plant-inducible expression. Mol Gen Genet. 1989 Oct;219(1-2):289–298. doi: 10.1007/BF00261190. [DOI] [PubMed] [Google Scholar]
- Goethals K., Leyman B., Van Den Eede G., Van Montagu M., Holsters M. An Azorhizobium caulinodans ORS571 locus involved in lipopolysaccharide production and nodule formation on Sesbania rostrata stems and roots. J Bacteriol. 1994 Jan;176(1):92–99. doi: 10.1128/jb.176.1.92-99.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goormachtig S., Alves-Ferreira M., Van Montagu M., Engler G., Holsters M. Expression of cell cycle genes during Sesbania rostrata stem nodule development. Mol Plant Microbe Interact. 1997 Apr;10(3):316–325. doi: 10.1094/MPMI.1997.10.3.316. [DOI] [PubMed] [Google Scholar]
- Goormachtig S., Valerio-Lepiniec M., Szczyglowski K., Van Montagu M., Holsters M., de Bruijn F. J. Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol Plant Microbe Interact. 1995 Nov-Dec;8(6):816–824. doi: 10.1094/mpmi-8-0816. [DOI] [PubMed] [Google Scholar]
- Hanfrey C., Fife M., Buchanan-Wollaston V. Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins. Plant Mol Biol. 1996 Feb;30(3):597–609. doi: 10.1007/BF00049334. [DOI] [PubMed] [Google Scholar]
- Heidstra R., Geurts R., Franssen H., Spaink H. P., Van Kammen A., Bisseling T. Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa. Plant Physiol. 1994 Jul;105(3):787–797. doi: 10.1104/pp.105.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh K. M., Hendriks T., de Jong A. J., Lo Schiavo F., Bucherna N., Højrup P., Mikkelsen J. D., de Vries S. C. Characterization of chitinases able to rescue somatic embryos of the temperature-sensitive carrot variant ts 11. Plant Mol Biol. 1996 Jun;31(3):631–645. doi: 10.1007/BF00042235. [DOI] [PubMed] [Google Scholar]
- Kuranda M. J., Robbins P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991 Oct 15;266(29):19758–19767. [PubMed] [Google Scholar]
- Lawton K., Ward E., Payne G., Moyer M., Ryals J. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol. 1992 Aug;19(5):735–743. doi: 10.1007/BF00027070. [DOI] [PubMed] [Google Scholar]
- Long S. R. Rhizobium symbiosis: nod factors in perspective. Plant Cell. 1996 Oct;8(10):1885–1898. doi: 10.1105/tpc.8.10.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long S. R., Staskawicz B. J. Prokaryotic plant parasites. Cell. 1993 Jun 4;73(5):921–935. doi: 10.1016/0092-8674(93)90271-q. [DOI] [PubMed] [Google Scholar]
- Lotan T., Ori N., Fluhr R. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell. 1989 Sep;1(9):881–887. doi: 10.1105/tpc.1.9.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mergaert P., Van Montagu M., Holsters M. Molecular mechanisms of Nod factor diversity. Mol Microbiol. 1997 Sep;25(5):811–817. doi: 10.1111/j.1365-2958.1997.mmi526.x. [DOI] [PubMed] [Google Scholar]
- Mergaert P., Van Montagu M., Promé J. C., Holsters M. Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1551–1555. doi: 10.1073/pnas.90.4.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen K. K., Mikkelsen J. D., Kragh K. M., Bojsen K. An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):495–506. doi: 10.1094/mpmi-6-495. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin C., Granado J., Müller J., Wiemken A., Mellor R. B., Felix G., Regenass M., Broughton W. J., Boller T. Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2196–2200. doi: 10.1073/pnas.91.6.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin C., Schultze M., Kondorosi E., Kondorosi A. Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa. Plant Physiol. 1995 Aug;108(4):1607–1614. doi: 10.1104/pp.108.4.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien H. C., Dreyfus B. L., Schmidt E. L. Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J Bacteriol. 1983 Nov;156(2):888–897. doi: 10.1128/jb.156.2.888-897.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsujibo H., Orikoshi H., Imada C., Okami Y., Miyamoto K., Inamori Y. Site-directed mutagenesis of chitinase from Alteromonas sp. strain O-7. Biosci Biotechnol Biochem. 1993 Aug;57(8):1396–1397. doi: 10.1271/bbb.57.1396. [DOI] [PubMed] [Google Scholar]
- Vance C. P. Rhizobium infection and nodulation: a beneficial plant disease? Annu Rev Microbiol. 1983;37:399–424. doi: 10.1146/annurev.mi.37.100183.002151. [DOI] [PubMed] [Google Scholar]
- Vijn I., Yang W. C., Pallisgård N., Ostergaard Jensen E., van Kammen A., Bisseling T. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol. 1995 Sep;28(6):1111–1119. doi: 10.1007/BF00032671. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Kobori K., Miyashita K., Fujii T., Sakai H., Uchida M., Tanaka H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem. 1993 Sep 5;268(25):18567–18572. [PubMed] [Google Scholar]