Abstract
Azorhizobium caulinodans strain ORS571 is a symbiont of the tropical legume Sesbania rostrata. Upon nod gene induction with naringenin, strain ORS571 secretes into the culture medium Nod factors that morphologically change the host plant--in particular, deformed root hairs (Hai/Had) and meristematic foci are formed at the basis of lateral roots. The latter infrequently develop further into nodule-like structures. The azorhizobial Nod factors are chitin tetramers or pentamers, N-acylated at the nonreducing-end glucosamine with either vaccenic acid (C18:1) or stearic acid (C18:0). They, thus, resemble the previously described Nod factors from (brady)rhizobia. The backbone lipooligosaccharide is substituted with unusual modifications, presumably involved in host-specificity determination. There is a D-arabinose branch on the reducing end and an N-methyl and O-carbamoyl substitution on the nonreducing end of the oligosaccharide chain. The previously identified nod gene nolK may be involved in the synthesis of a D-arabinose derivative. The nodS gene product is probably responsible for the N-methylation of Nod factors.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonner W. M., Stedman J. D. Efficient fluorography of 3H and 14C on thin layers. Anal Biochem. 1978 Aug 15;89(1):247–256. doi: 10.1016/0003-2697(78)90747-9. [DOI] [PubMed] [Google Scholar]
- Goethals K., Gao M., Tomekpe K., Van Montagu M., Holsters M. Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: nucleotide sequence and plant-inducible expression. Mol Gen Genet. 1989 Oct;219(1-2):289–298. doi: 10.1007/BF00261190. [DOI] [PubMed] [Google Scholar]
- Goethals K., Mergaert P., Gao M., Geelen D., Van Montagu M., Holsters M. Identification of a new inducible nodulation gene in Azorhizobium caulinodans. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):405–411. doi: 10.1094/mpmi-5-405. [DOI] [PubMed] [Google Scholar]
- Goethals K., Van den Eeede G., Van Montagu M., Holsters M. Identification and characterization of a functional nodD gene in Azorhizobium caulinodans ORS571. J Bacteriol. 1990 May;172(5):2658–2666. doi: 10.1128/jb.172.5.2658-2666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
- Kawakami Y., Yamasaki K., Nakamura S. The structures of component A1 (= LL-AB664) and component A2 (= LL-AC541), streptothricin-like antibiotics. J Antibiot (Tokyo) 1981 Jul;34(7):921–922. doi: 10.7164/antibiotics.34.921. [DOI] [PubMed] [Google Scholar]
- Kusumoto S., Kambayashi Y., Imaoka S., Shima K., Shiba T. Total chemical structure of streptothricin. J Antibiot (Tokyo) 1982 Jul;35(7):925–927. doi: 10.7164/antibiotics.35.925. [DOI] [PubMed] [Google Scholar]
- Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
- Roche P., Debellé F., Maillet F., Lerouge P., Faucher C., Truchet G., Dénarié J., Promé J. C. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell. 1991 Dec 20;67(6):1131–1143. doi: 10.1016/0092-8674(91)90290-f. [DOI] [PubMed] [Google Scholar]
- Roche P., Lerouge P., Ponthus C., Promé J. C. Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J Biol Chem. 1991 Jun 15;266(17):10933–10940. [PubMed] [Google Scholar]
- Sanjuan J., Carlson R. W., Spaink H. P., Bhat U. R., Barbour W. M., Glushka J., Stacey G. A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8789–8793. doi: 10.1073/pnas.89.18.8789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze M., Quiclet-Sire B., Kondorosi E., Virelizer H., Glushka J. N., Endre G., Géro S. D., Kondorosi A. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):192–196. doi: 10.1073/pnas.89.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaink H. P., Aarts A., Stacey G., Bloemberg G. V., Lugtenberg B. J., Kennedy E. P. Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact. 1992 Jan-Feb;5(1):72–80. doi: 10.1094/mpmi-5-072. [DOI] [PubMed] [Google Scholar]
- Spaink H. P., Sheeley D. M., van Brussel A. A., Glushka J., York W. S., Tak T., Geiger O., Kennedy E. P., Reinhold V. N., Lugtenberg B. J. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991 Nov 14;354(6349):125–130. doi: 10.1038/354125a0. [DOI] [PubMed] [Google Scholar]
- Tsien H. C., Dreyfus B. L., Schmidt E. L. Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J Bacteriol. 1983 Nov;156(2):888–897. doi: 10.1128/jb.156.2.888-897.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Brussel A. A., Bakhuizen R., van Spronsen P. C., Spaink H. P., Tak T., Lugtenberg B. J., Kijne J. W. Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science. 1992 Jul 3;257(5066):70–72. doi: 10.1126/science.257.5066.70. [DOI] [PubMed] [Google Scholar]