Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jun;10(6):957–965. doi: 10.1105/tpc.10.6.957

Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein.

S B Narasimhulu 1, A S Reddy 1
PMCID: PMC144043  PMID: 9634584

Abstract

The kinesin-like calmodulin binding protein (KCBP) is a new member of the kinesin superfamily that appears to be present only in plants. The KCBP is unique in its ability to interact with calmodulin in a Ca2+-dependent manner. To study the interaction of the KCBP with microtubules, we expressed different regions of the Arabidopsis KCBP and used the purified proteins in cosedimentation assays with microtubules. The motor domain with or without the calmodulin binding domain bound to microtubules. The binding of the motor domain containing the calmodulin binding region to microtubules was inhibited by Ca2+-calmodulin. This Ca2+-calmodulin regulation of motor domain interactions with microtubules was abolished in the presence of antibodies specific to the calmodulin binding region. In addition, the binding of the motor domain lacking the calmodulin binding region to microtubules was not inhibited in the presence of Ca2+-calmodulin, suggesting an essential role for the calmodulin binding region in Ca2+-calmodulin modulation. Results of the cosedimentation assays with the N-terminal tail suggest the presence of a second microtubule binding site on the KCBP. However, the interaction of the N-terminal tail region of the KCBP with microtubules was insensitive to ATP. These data on the interaction of the KCBP with microtubules provide new insights into the functioning of the KCBP in plants.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada T., Kuriyama R., Shibaoka H. TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci. 1997 Jan;110(Pt 2):179–189. doi: 10.1242/jcs.110.2.179. [DOI] [PubMed] [Google Scholar]
  2. Barton N. R., Goldstein L. S. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1735–1742. doi: 10.1073/pnas.93.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blangy A., Lane H. A., d'Hérin P., Harper M., Kress M., Nigg E. A. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell. 1995 Dec 29;83(7):1159–1169. doi: 10.1016/0092-8674(95)90142-6. [DOI] [PubMed] [Google Scholar]
  4. Bloom G. S., Endow S. A. Motor proteins. 1: kinesins. Protein Profile. 1994;1(10):1059–1116. [PubMed] [Google Scholar]
  5. Bowser J., Reddy A. S. Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J. 1997 Dec;12(6):1429–1437. doi: 10.1046/j.1365-313x.1997.12061429.x. [DOI] [PubMed] [Google Scholar]
  6. Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
  7. Chandra R., Salmon E. D., Erickson H. P., Lockhart A., Endow S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem. 1993 Apr 25;268(12):9005–9013. [PubMed] [Google Scholar]
  8. Chen Z. Y., Hasson T., Kelley P. M., Schwender B. J., Schwartz M. F., Ramakrishnan M., Kimberling W. J., Mooseker M. S., Corey D. P. Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics. 1996 Sep 15;36(3):440–448. doi: 10.1006/geno.1996.0489. [DOI] [PubMed] [Google Scholar]
  9. Collins K., Sellers J. R., Matsudaira P. Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J Cell Biol. 1990 Apr;110(4):1137–1147. doi: 10.1083/jcb.110.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coluccio L. M., Bretscher A. Mapping of the microvillar 110K-calmodulin complex: calmodulin-associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity. J Cell Biol. 1988 Feb;106(2):367–373. doi: 10.1083/jcb.106.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cross R. A. Reversing the kinesin ratchet--a diverting tail. Nature. 1997 Sep 4;389(6646):15–16. doi: 10.1038/37864. [DOI] [PubMed] [Google Scholar]
  12. Endow S. A., Kang S. J., Satterwhite L. L., Rose M. D., Skeen V. P., Salmon E. D. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 1994 Jun 1;13(11):2708–2713. doi: 10.1002/j.1460-2075.1994.tb06561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halsall D. J., Hammer J. A., 3rd A second isoform of chicken brush border myosin I contains a 29-residue inserted sequence that binds calmodulin. FEBS Lett. 1990 Jul 2;267(1):126–130. doi: 10.1016/0014-5793(90)80305-3. [DOI] [PubMed] [Google Scholar]
  14. Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
  15. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
  16. Kuriyama R., Dragas-Granoic S., Maekawa T., Vassilev A., Khodjakov A., Kobayashi H. Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J Cell Sci. 1994 Dec;107(Pt 12):3485–3499. doi: 10.1242/jcs.107.12.3485. [DOI] [PubMed] [Google Scholar]
  17. Kuriyama R., Kofron M., Essner R., Kato T., Dragas-Granoic S., Omoto C. K., Khodjakov A. Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells. J Cell Biol. 1995 May;129(4):1049–1059. doi: 10.1083/jcb.129.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liao H., Li G., Yen T. J. Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science. 1994 Jul 15;265(5170):394–398. doi: 10.1126/science.8023161. [DOI] [PubMed] [Google Scholar]
  19. Liu B., Cyr R. J., Palevitz B. A. A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell. 1996 Jan;8(1):119–132. doi: 10.1105/tpc.8.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu G. Q., Cai G., Del Casino C., Tiezzi A., Cresti M. Kinesin-related polypeptide is associated with vesicles from Corylus avellana pollen. Cell Motil Cytoskeleton. 1994;29(2):155–166. doi: 10.1002/cm.970290207. [DOI] [PubMed] [Google Scholar]
  21. Matthies H. J., McDonald H. B., Goldstein L. S., Theurkauf W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J Cell Biol. 1996 Jul;134(2):455–464. doi: 10.1083/jcb.134.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matthies H. J., Miller R. J., Palfrey H. C. Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J Biol Chem. 1993 May 25;268(15):11176–11187. [PubMed] [Google Scholar]
  23. McDonald H. B., Stewart R. J., Goldstein L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell. 1990 Dec 21;63(6):1159–1165. doi: 10.1016/0092-8674(90)90412-8. [DOI] [PubMed] [Google Scholar]
  24. Meluh P. B., Rose M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell. 1990 Mar 23;60(6):1029–1041. doi: 10.1016/0092-8674(90)90351-e. [DOI] [PubMed] [Google Scholar]
  25. Merdes A., Cleveland D. W. Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol. 1997 Sep 8;138(5):953–956. doi: 10.1083/jcb.138.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mitsui H., Nakatani K., Yamaguchi-Shinozaki K., Shinozaki K., Nishikawa K., Takahashi H. Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol Biol. 1994 Aug;25(5):865–876. doi: 10.1007/BF00028881. [DOI] [PubMed] [Google Scholar]
  27. Mitsui H., Yamaguchi-Shinozaki K., Shinozaki K., Nishikawa K., Takahashi H. Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet. 1993 Apr;238(3):362–368. doi: 10.1007/BF00291995. [DOI] [PubMed] [Google Scholar]
  28. Moore J. D., Endow S. A. Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays. 1996 Mar;18(3):207–219. doi: 10.1002/bies.950180308. [DOI] [PubMed] [Google Scholar]
  29. Narasimhulu S. B., Kao Y. L., Reddy A. S. Interaction of Arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca(2+)-calmodulin. Plant J. 1997 Nov;12(5):1139–1149. doi: 10.1046/j.1365-313x.1997.12051139.x. [DOI] [PubMed] [Google Scholar]
  30. Navone F., Niclas J., Hom-Booher N., Sparks L., Bernstein H. D., McCaffrey G., Vale R. D. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J Cell Biol. 1992 Jun;117(6):1263–1275. doi: 10.1083/jcb.117.6.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nédélec F. J., Surrey T., Maggs A. C., Leibler S. Self-organization of microtubules and motors. Nature. 1997 Sep 18;389(6648):305–308. doi: 10.1038/38532. [DOI] [PubMed] [Google Scholar]
  32. Oppenheimer D. G., Pollock M. A., Vacik J., Szymanski D. B., Ericson B., Feldmann K., Marks M. D. Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6261–6266. doi: 10.1073/pnas.94.12.6261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
  34. Reddy A. S., Narasimhulu S. B., Day I. S. Structural organization of a gene encoding a novel calmodulin-binding kinesin-like protein from Arabidopsis. Gene. 1997 Dec 19;204(1-2):195–200. doi: 10.1016/s0378-1119(97)00546-5. [DOI] [PubMed] [Google Scholar]
  35. Reddy A. S., Narasimhulu S. B., Safadi F., Golovkin M. A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J. 1996 Jul;10(1):9–21. doi: 10.1046/j.1365-313x.1996.10010009.x. [DOI] [PubMed] [Google Scholar]
  36. Reddy A. S., Safadi F., Narasimhulu S. B., Golovkin M., Hu X. A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem. 1996 Mar 22;271(12):7052–7060. doi: 10.1074/jbc.271.12.7052. [DOI] [PubMed] [Google Scholar]
  37. Sawin K. E., Mitchison T. J. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4289–4293. doi: 10.1073/pnas.92.10.4289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Song H., Golovkin M., Reddy A. S., Endow S. A. In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):322–327. doi: 10.1073/pnas.94.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tiezzi A., Moscatelli A., Cai G., Bartalesi A., Cresti M. An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil Cytoskeleton. 1992;21(2):132–137. doi: 10.1002/cm.970210206. [DOI] [PubMed] [Google Scholar]
  40. Trewavas A. J., Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 Jul;9(7):1181–1195. doi: 10.1105/tpc.9.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Walker R. A., Salmon E. D., Endow S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature. 1990 Oct 25;347(6295):780–782. doi: 10.1038/347780a0. [DOI] [PubMed] [Google Scholar]
  42. Wang W., Takezawa D., Narasimhulu S. B., Reddy A. S., Poovaiah B. W. A novel kinesin-like protein with a calmodulin-binding domain. Plant Mol Biol. 1996 Apr;31(1):87–100. doi: 10.1007/BF00020609. [DOI] [PubMed] [Google Scholar]
  43. Wolenski J. S. Regulation of calmodulin-binding myosins. Trends Cell Biol. 1995 Aug;5(8):310–316. doi: 10.1016/s0962-8924(00)89053-4. [DOI] [PubMed] [Google Scholar]
  44. Yang J. T., Saxton W. M., Stewart R. J., Raff E. C., Goldstein L. S. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science. 1990 Jul 6;249(4964):42–47. doi: 10.1126/science.2142332. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES