Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Sep;10(9):1551–1560. doi: 10.1105/tpc.10.9.1551

Molecular localization of a redox-modulated process regulating plant mitochondrial electron transport

GC Vanlerberghe 1, L McIntosh 1, JY Yip 1
PMCID: PMC144083  PMID: 9724700

Abstract

Using in organellar assays, we found that significant tobacco alternative oxidase (AOX) activity is dependent on both reduction of a putative regulatory disulfide bond and the presence of pyruvate, which may interact with a Cys sulfhydryl. This redox modulation and pyruvate activation thus may be important in determining the partitioning of electrons to AOX in vivo. To investigate these regulatory mechanisms, we generated tobacco plants expressing mutated AOX proteins. Mutation of the most N-terminal Cys residue (Cys-126) to an Ala residue produced an AOX that could not be converted to the disulfide-linked form, thus identifying this Cys residue as being responsible for redox modulation. Although this mutation might be expected to produce an AOX with constitutive high activity in the presence of pyruvate, we found it to have minimal in organellar activity in the presence of pyruvate. Nonetheless, the Cys-126 mutation did not appear to have compromised the catalytic function of AOX, given that cells expressing the protein displayed high rates of cyanide-resistant respiration in vivo. The striking difference between in vivo and in organellar results suggests that an additional mechanism(s), as yet unidentified by in organellar assays, may promote activity in vivo. Mutation of the Cys residue nearest the presumptive active site (Cys-176) to an Ala residue did not prevent disulfide bond formation or affect the ability of AOX to be stimulated by pyruvate, indicating that this Cys residue is involved in neither redox modulation nor pyruvate activation.

Full Text

The Full Text of this article is available as a PDF (126.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., Li D., Prakash N., Stevens F. J. Identification of potential redox-sensitive cysteines in cytosolic forms of fructosebisphosphatase and glyceraldehyde-3-phosphate dehydrogenase. Planta. 1995;196(1):118–124. doi: 10.1007/BF00193225. [DOI] [PubMed] [Google Scholar]
  2. Besse I., Wong J. H., Kobrehel K., Buchanan B. B. Thiocalsin: a thioredoxin-linked, substrate-specific protease dependent on calcium. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3169–3175. doi: 10.1073/pnas.93.8.3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Day D. A., Millar A. H., Wiskich J. T., Whelan J. Regulation of Alternative Oxidase Activity by Pyruvate in Soybean Mitochondria. Plant Physiol. 1994 Dec;106(4):1421–1427. doi: 10.1104/pp.106.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hiser C., Kapranov P., McIntosh L. Genetic modification of respiratory capacity in potato. Plant Physiol. 1996 Jan;110(1):277–286. doi: 10.1104/pp.110.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoefnagel M. H., Millar A. H., Wiskich J. T., Day D. A. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys. 1995 Apr 20;318(2):394–400. doi: 10.1006/abbi.1995.1245. [DOI] [PubMed] [Google Scholar]
  7. Hoefnagel MHN., Rich P. R., Zhang Q., Wiskich J. T. Substrate Kinetics of the Plant Mitochondrial Alternative Oxidase and the Effects of Pyruvate. Plant Physiol. 1997 Nov;115(3):1145–1153. doi: 10.1104/pp.115.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huppe H. C., Farr T. J., Turpin D. H. Coordination of Chloroplastic Metabolism in N-Limited Chlamydomonas reinhardtii by Redox Modulation (II. Redox Modulation Activates the Oxidative Pentose Phosphate Pathway during Photosynthetic Nitrate Assimilation). Plant Physiol. 1994 Aug;105(4):1043–1048. doi: 10.1104/pp.105.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kiss F., Wu M. X., Wong J. H., Balogh A., Buchanan B. B. Redox active sulfhydryls are required for fructose 2,6-bisphosphate activation of plant pyrophosphate fructose-6-phosphate 1-phosphotransferase. Arch Biochem Biophys. 1991 Jun;287(2):337–340. doi: 10.1016/0003-9861(91)90487-4. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243–248. doi: 10.1016/0003-2697(86)90432-x. [DOI] [PubMed] [Google Scholar]
  12. Millar A. H., Hoefnagel MHN., Day D. A., Wiskich J. T. Specificity of the Organic Acid Activation of Alternative Oxidase in Plant Mitochondria. Plant Physiol. 1996 Jun;111(2):613–618. doi: 10.1104/pp.111.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millar A. H., Wiskich J. T., Whelan J., Day D. A. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 1993 Aug 30;329(3):259–262. doi: 10.1016/0014-5793(93)80233-k. [DOI] [PubMed] [Google Scholar]
  14. Popov V. N., Simonian R. A., Skulachev V. P., Starkov A. A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 1997 Sep 22;415(1):87–90. doi: 10.1016/s0014-5793(97)01099-5. [DOI] [PubMed] [Google Scholar]
  15. Ribas-Carbo M., Lennon A. M., Robinson S. A., Giles L., Berry J. A., Siedow J. N. The Regulation of Electron Partitioning between the Cytochrome and Alternative Pathways in Soybean Cotyledon and Root Mitochondria. Plant Physiol. 1997 Mar;113(3):903–911. doi: 10.1104/pp.113.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sasaki Y., Kozaki A., Hatano M. Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11096–11101. doi: 10.1073/pnas.94.20.11096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scheibe R. Redox-modulation of chloroplast enzymes : a common principle for individual control. Plant Physiol. 1991 May;96(1):1–3. doi: 10.1104/pp.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Siedow J. N., Umbach A. L., Moore A. L. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett. 1995 Mar 27;362(1):10–14. doi: 10.1016/0014-5793(95)00196-g. [DOI] [PubMed] [Google Scholar]
  19. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Umbach A. L., Siedow J. N. The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that alpha-keto acid activation involves the formation of a thiohemiacetal. J Biol Chem. 1996 Oct 4;271(40):25019–25026. doi: 10.1074/jbc.271.40.25019. [DOI] [PubMed] [Google Scholar]
  21. Vanlerberghe G. C., Day D. A., Wiskich J. T., Vanlerberghe A. E., McIntosh L. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). Plant Physiol. 1995 Oct;109(2):353–361. doi: 10.1104/pp.109.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vanlerberghe G. C., McIntosh L. Mitochondrial electron transport regulation of nuclear gene expression. Studies with the alternative oxidase gene of tobacco. Plant Physiol. 1994 Jul;105(3):867–874. doi: 10.1104/pp.105.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vanlerberghe G. C., McLntosh L. Signals Regulating the Expression of the Nuclear Gene Encoding Alternative Oxidase of Plant Mitochondria. Plant Physiol. 1996 Jun;111(2):589–595. doi: 10.1104/pp.111.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vanlerberghe G. C., Vanlerberghe A. E., McIntosh L. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco). Plant Physiol. 1994 Dec;106(4):1503–1510. doi: 10.1104/pp.106.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vanlerberghe Greg C., McIntosh Lee. ALTERNATIVE OXIDASE: From Gene to Function. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):703–734. doi: 10.1146/annurev.arplant.48.1.703. [DOI] [PubMed] [Google Scholar]
  26. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  27. Wagner A. M. A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett. 1995 Jul 17;368(2):339–342. doi: 10.1016/0014-5793(95)00688-6. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES