Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Oct;11(10):1945–1952. doi: 10.1105/tpc.11.10.1945

Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.

T Kinoshita 1, R Yadegari 1, J J Harada 1, R B Goldberg 1, R L Fischer 1
PMCID: PMC144115  PMID: 10521524

Abstract

In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.

Full Text

The Full Text of this article is available as a PDF (234.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger F. Endosperm development. Curr Opin Plant Biol. 1999 Feb;2(1):28–32. doi: 10.1016/s1369-5266(99)80006-5. [DOI] [PubMed] [Google Scholar]
  2. Chaudhuri S., Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4867–4871. doi: 10.1073/pnas.91.11.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaudhury A. M., Ming L., Miller C., Craig S., Dennis E. S., Peacock W. J. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4223–4228. doi: 10.1073/pnas.94.8.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldberg R. B., de Paiva G., Yadegari R. Plant embryogenesis: zygote to seed. Science. 1994 Oct 28;266(5185):605–614. doi: 10.1126/science.266.5185.605. [DOI] [PubMed] [Google Scholar]
  5. Grossniklaus U., Vielle-Calzada J. P., Hoeppner M. A., Gagliano W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science. 1998 Apr 17;280(5362):446–450. doi: 10.1126/science.280.5362.446. [DOI] [PubMed] [Google Scholar]
  6. Hardtke C. S., Müller J., Berleth T. Genetic similarity among Arabidopsis thaliana ecotypes estimated by DNA sequence comparison. Plant Mol Biol. 1996 Dec;32(5):915–922. doi: 10.1007/BF00020488. [DOI] [PubMed] [Google Scholar]
  7. Jenuwein T., Laible G., Dorn R., Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998 Jan;54(1):80–93. doi: 10.1007/s000180050127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kermicle J. L., Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl. 1990:9–14. [PubMed] [Google Scholar]
  9. Kinoshita T., Yamada K., Hiraiwa N., Kondo M., Nishimura M., Hara-Nishimura I. Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J. 1999 Jul;19(1):43–53. doi: 10.1046/j.1365-313x.1999.00497.x. [DOI] [PubMed] [Google Scholar]
  10. Kiyosue T., Ohad N., Yadegari R., Hannon M., Dinneny J., Wells D., Katz A., Margossian L., Harada J. J., Goldberg R. B. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4186–4191. doi: 10.1073/pnas.96.7.4186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leon-Kloosterziel K. M., Keijzer C. J., Koornneef M. A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development. Plant Cell. 1994 Mar;6(3):385–392. doi: 10.1105/tpc.6.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lopes M. A., Larkins B. A. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. doi: 10.1105/tpc.5.10.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J., Chaudhury A. M. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):296–301. doi: 10.1073/pnas.96.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martienssen R. Chromosomal imprinting in plants. Curr Opin Genet Dev. 1998 Apr;8(2):240–244. doi: 10.1016/s0959-437x(98)80147-0. [DOI] [PubMed] [Google Scholar]
  15. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  16. Neff M. M., Neff J. D., Chory J., Pepper A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998 May;14(3):387–392. doi: 10.1046/j.1365-313x.1998.00124.x. [DOI] [PubMed] [Google Scholar]
  17. Ohad N., Yadegari R., Margossian L., Hannon M., Michaeli D., Harada J. J., Goldberg R. B., Fischer R. L. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell. 1999 Mar;11(3):407–416. doi: 10.1105/tpc.11.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pagel M. Mother and father in surprise genetic agreement. Nature. 1999 Jan 7;397(6714):19–20. doi: 10.1038/16142. [DOI] [PubMed] [Google Scholar]
  19. Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell. 1998 May 1;93(3):333–336. doi: 10.1016/s0092-8674(00)81162-9. [DOI] [PubMed] [Google Scholar]
  20. Schulz P., Jensen W. A. Capsella embryogenesis: the chalazal proliferating tissue. J Cell Sci. 1971 Jan;8(1):201–227. doi: 10.1242/jcs.8.1.201. [DOI] [PubMed] [Google Scholar]
  21. Scott R. J., Spielman M., Bailey J., Dickinson H. G. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development. 1998 Sep;125(17):3329–3341. doi: 10.1242/dev.125.17.3329. [DOI] [PubMed] [Google Scholar]
  22. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tilghman S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell. 1999 Jan 22;96(2):185–193. doi: 10.1016/s0092-8674(00)80559-0. [DOI] [PubMed] [Google Scholar]
  24. Yeung E. C., Meinke D. W. Embryogenesis in Angiosperms: Development of the Suspensor. Plant Cell. 1993 Oct;5(10):1371–1381. doi: 10.1105/tpc.5.10.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES