Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Nov;11(11):2249–2260. doi: 10.1105/tpc.11.11.2249

Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves

J Narvaez-Vasquez 1, J Florin-Christensen 1, CA Ryan 1
PMCID: PMC144127  PMID: 10559447

Abstract

Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position.

Full Text

The Full Text of this article is available as a PDF (214.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bartoli F., Lin H. K., Ghomashchi F., Gelb M. H., Jain M. K., Apitz-Castro R. Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets. J Biol Chem. 1994 Jun 3;269(22):15625–15630. [PubMed] [Google Scholar]
  3. Bennett C. F., Mong S., Wu H. L., Clark M. A., Wheeler L., Crooke S. T. Inhibition of phosphoinositide-specific phospholipase C by manoalide. Mol Pharmacol. 1987 Nov;32(5):587–593. [PubMed] [Google Scholar]
  4. Bergey D. R., Howe G. A., Ryan C. A. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12053–12058. doi: 10.1073/pnas.93.22.12053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergey D. R., Orozco-Cardenas M., de Moura D. S., Ryan C. A. A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1756–1760. doi: 10.1073/pnas.96.4.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bishop P. D., Makus D. J., Pearce G., Ryan C. A. Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3536–3540. doi: 10.1073/pnas.78.6.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blechert S., Brodschelm W., Hölder S., Kammerer L., Kutchan T. M., Mueller M. J., Xia Z. Q., Zenk M. H. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4099–4105. doi: 10.1073/pnas.92.10.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brightman A. O., Zhu X. Z., Morré D. J. Activation of Plasma Membrane NADH Oxidase Activity by Products of Phospholipase A. Plant Physiol. 1991 Aug;96(4):1314–1320. doi: 10.1104/pp.96.4.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown J. H., Lynch D. V., Thompson J. E. Molecular species specificity of phospholipid breakdown in microsomal membranes of senescing carnation flowers. Plant Physiol. 1987 Nov;85(3):679–683. doi: 10.1104/pp.85.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandra S., Heinstein P. F., Low P. S. Activation of Phospholipase A by Plant Defense Elicitors. Plant Physiol. 1996 Mar;110(3):979–986. doi: 10.1104/pp.110.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chyb S., Raghu P., Hardie R. C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature. 1999 Jan 21;397(6716):255–259. doi: 10.1038/16703. [DOI] [PubMed] [Google Scholar]
  12. Conconi A., Miquel M., Browse J. A., Ryan C. A. Intracellular Levels of Free Linolenic and Linoleic Acids Increase in Tomato Leaves in Response to Wounding. Plant Physiol. 1996 Jul;111(3):797–803. doi: 10.1104/pp.111.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Constabel C. P., Bergey D. R., Ryan C. A. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):407–411. doi: 10.1073/pnas.92.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Creelman Robert A., Mullet John E. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):355–381. doi: 10.1146/annurev.arplant.48.1.355. [DOI] [PubMed] [Google Scholar]
  15. Dennis E. A. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci. 1997 Jan;22(1):1–2. doi: 10.1016/s0968-0004(96)20031-3. [DOI] [PubMed] [Google Scholar]
  16. Doares S. H., Syrovets T., Weiler E. W., Ryan C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4095–4098. doi: 10.1073/pnas.92.10.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dyer J. H., Ryu S. B., Wang X. Multiple Forms of Phospholipase D following Germination and during Leaf Development of Castor Bean. Plant Physiol. 1994 Jun;105(2):715–724. doi: 10.1104/pp.105.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ebel J. Oligoglucoside elicitor-mediated activation of plant defense. Bioessays. 1998 Jul;20(7):569–576. doi: 10.1002/(SICI)1521-1878(199807)20:7<569::AID-BIES8>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  19. Falk A., Feys B. J., Frost L. N., Jones J. D., Daniels M. J., Parker J. E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3292–3297. doi: 10.1073/pnas.96.6.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Farmer E. E., Moloshok T. D., Saxton M. J., Ryan C. A. Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem. 1991 Feb 15;266(5):3140–3145. [PubMed] [Google Scholar]
  21. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goetzl E. J., An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998 Dec;12(15):1589–1598. [PubMed] [Google Scholar]
  23. Green T. R., Ryan C. A. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science. 1972 Feb 18;175(4023):776–777. doi: 10.1126/science.175.4023.776. [DOI] [PubMed] [Google Scholar]
  24. Gross W., Yang W., Boss W. F. Release of carrot plasma membrane-associated phosphatidylinositol kinase by phospholipase A2 and activation by a 70 kDa protein. Biochim Biophys Acta. 1992 Feb 19;1134(1):73–80. doi: 10.1016/0167-4889(92)90029-b. [DOI] [PubMed] [Google Scholar]
  25. Gupta C. M., Radhakrishnan R., Khorana H. G. Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4315–4319. doi: 10.1073/pnas.74.10.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hahn M. G., Darvill A. G., Albersheim P. Host-Pathogen Interactions : XIX. THE ENDOGENOUS ELICITOR, A FRAGMENT OF A PLANT CELL WALL POLYSACCHARIDE THAT ELICITS PHYTOALEXIN ACCUMULATION IN SOYBEANS. Plant Physiol. 1981 Nov;68(5):1161–1169. doi: 10.1104/pp.68.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hajra A. K. On extraction of acyl and alkyl dihydroxyacetone phosphate from incubation mixtures. Lipids. 1974 Aug;9(8):502–505. doi: 10.1007/BF02532495. [DOI] [PubMed] [Google Scholar]
  28. Hasson E. P., Laties G. G. Purification and characterization of an a type phospholipase from potato and its effect on potato mitochondria. Plant Physiol. 1976 Feb;57(2):148–152. doi: 10.1104/pp.57.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Howe G. A., Lightner J., Browse J., Ryan C. A. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell. 1996 Nov;8(11):2067–2077. doi: 10.1105/tpc.8.11.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kauss H., Jeblick W. Influence of Free Fatty Acids, Lysophosphatidylcholine, Platelet-Activating Factor, Acylcarnitine, and Echinocandin B on 1,3-beta-d-Glucan Synthase and Callose Synthesis. Plant Physiol. 1986 Jan;80(1):7–13. doi: 10.1104/pp.80.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kim B. C., Ha K. S., Park J. B., Kim J. H. Evidence for role of phospholipase A2 in phosphatidic acid-induced signaling to c-fos serum response element activation. Biochem Biophys Res Commun. 1998 Jun 29;247(3):630–635. doi: 10.1006/bbrc.1998.8855. [DOI] [PubMed] [Google Scholar]
  32. Kim D. K., Lee H. J., Lee Y. Detection of two phospholipase A2(PLA2) activities in leaves of higher plant Vicia faba and comparison with mammalian PLA2's. FEBS Lett. 1994 May 2;343(3):213–218. doi: 10.1016/0014-5793(94)80558-x. [DOI] [PubMed] [Google Scholar]
  33. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  34. Legendre L., Yueh Y. G., Crain R., Haddock N., Heinstein P. F., Low P. S. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993 Nov 25;268(33):24559–24563. [PubMed] [Google Scholar]
  35. Leslie C. C. Properties and regulation of cytosolic phospholipase A2. J Biol Chem. 1997 Jul 4;272(27):16709–16712. doi: 10.1074/jbc.272.27.16709. [DOI] [PubMed] [Google Scholar]
  36. Lombardo D., Dennis E. A. Cobra venom phospholipase A2 inhibition by manoalide. A novel type of phospholipase inhibitor. J Biol Chem. 1985 Jun 25;260(12):7234–7240. [PubMed] [Google Scholar]
  37. Martiny-Baron G., Scherer G. F. Phospholipid-stimulated protein kinase in plants. J Biol Chem. 1989 Oct 25;264(30):18052–18059. [PubMed] [Google Scholar]
  38. McGurl B., Pearce G., Orozco-Cardenas M., Ryan C. A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science. 1992 Mar 20;255(5051):1570–1573. doi: 10.1126/science.1549783. [DOI] [PubMed] [Google Scholar]
  39. Meindl T., Boller T., Felix G. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell. 1998 Sep;10(9):1561–1570. doi: 10.1105/tpc.10.9.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Munnik T., Irvine R. F., Musgrave A. Phospholipid signalling in plants. Biochim Biophys Acta. 1998 Jan 23;1389(3):222–272. doi: 10.1016/s0005-2760(97)00158-6. [DOI] [PubMed] [Google Scholar]
  41. Narvaez-Vasquez J., Orozco-Cardenas M. L., Ryan C. A. A Sulfhydryl Reagent Modulates Systemic Signaling for Wound-Induced and Systemin-Induced Proteinase Inhibitor Synthesis. Plant Physiol. 1994 Jun;105(2):725–730. doi: 10.1104/pp.105.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Orozco-Cardenas M., McGurl B., Ryan C. A. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8273–8276. doi: 10.1073/pnas.90.17.8273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Palmgren M. G., Sommarin M. Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 1989 Jul;90(3):1009–1014. doi: 10.1104/pp.90.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pearce G., Johnson S., Ryan C. A. Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem. 1993 Jan 5;268(1):212–216. [PubMed] [Google Scholar]
  45. Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H., Jones J. D. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell. 1999 Feb;11(2):273–287. doi: 10.1105/tpc.11.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ryan C. A. Assay and Biochemical Properties of the Proteinase Inhibitor-inducing Factor, a Wound Hormone. Plant Physiol. 1974 Sep;54(3):328–332. doi: 10.1104/pp.54.3.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ryan C. A., Pearce G. Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol. 1998;14:1–17. doi: 10.1146/annurev.cellbio.14.1.1. [DOI] [PubMed] [Google Scholar]
  48. Ryan C. A. Quantitative determination of soluble cellular proteins by radial diffusion in agar gels containing antibodies. Anal Biochem. 1967 Jun;19(3):434–440. doi: 10.1016/0003-2697(67)90233-3. [DOI] [PubMed] [Google Scholar]
  49. Ryu S. B., Wang X. Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochim Biophys Acta. 1996 Oct 18;1303(3):243–250. doi: 10.1016/0005-2760(96)00096-3. [DOI] [PubMed] [Google Scholar]
  50. Ryu S. B., Wang X. Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Biochim Biophys Acta. 1998 Jul 31;1393(1):193–202. doi: 10.1016/s0005-2760(98)00048-4. [DOI] [PubMed] [Google Scholar]
  51. Schaller A., Oecking C. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell. 1999 Feb;11(2):263–272. doi: 10.1105/tpc.11.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Scheer JM, Ryan CA. A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell. 1999 Aug;11(8):1525–1536. doi: 10.1105/tpc.11.8.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Scherer G. F., André B. A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun. 1989 Aug 30;163(1):111–117. doi: 10.1016/0006-291x(89)92106-2. [DOI] [PubMed] [Google Scholar]
  54. Selinger Z., Lapidot Y. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res. 1966 Jan;7(1):174–175. [PubMed] [Google Scholar]
  55. Senda K., Yoshioka H., Doke N., Kawakita K. A cytosolic phospholipase A2 from potato tissues appears to be patatin. Plant Cell Physiol. 1996 Apr;37(3):347–353. doi: 10.1093/oxfordjournals.pcp.a028952. [DOI] [PubMed] [Google Scholar]
  56. Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995 Dec 22;270(5244):1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
  57. Seo S., Sano H., Ohashi Y. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell. 1999 Feb;11(2):289–298. doi: 10.1105/tpc.11.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stahl U., Banas A., Stymne S. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids. Plant Physiol. 1995 Mar;107(3):953–962. doi: 10.1104/pp.107.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Stratmann J. W., Ryan C. A. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11085–11089. doi: 10.1073/pnas.94.20.11085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Street I. P., Lin H. K., Laliberté F., Ghomashchi F., Wang Z., Perrier H., Tremblay N. M., Huang Z., Weech P. K., Gelb M. H. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry. 1993 Jun 15;32(23):5935–5940. doi: 10.1021/bi00074a003. [DOI] [PubMed] [Google Scholar]
  61. Ståhl U., Ek B., Stymne S. Purification and characterization of a low-molecular-weight phospholipase A2 from developing seeds of elm. Plant Physiol. 1998 May;117(1):197–205. doi: 10.1104/pp.117.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tischfield J. A. A reassessment of the low molecular weight phospholipase A2 gene family in mammals. J Biol Chem. 1997 Jul 11;272(28):17247–17250. doi: 10.1074/jbc.272.28.17247. [DOI] [PubMed] [Google Scholar]
  63. Vera-Estrella R., Barkla B. J., Higgins V. J., Blumwald E. Plant Defense Response to Fungal Pathogens (Activation of Host-Plasma Membrane H+-ATPase by Elicitor-Induced Enzyme Dephosphorylation). Plant Physiol. 1994 Jan;104(1):209–215. doi: 10.1104/pp.104.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Vick B. A., Zimmerman D. C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. doi: 10.1104/pp.75.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Walker-Simmons M., Hadwiger L., Ryan C. A. Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Commun. 1983 Jan 14;110(1):194–199. doi: 10.1016/0006-291x(83)91279-2. [DOI] [PubMed] [Google Scholar]
  66. Walton T. J. Inositol lipid signal transduction in phytoalexin elicitation. Biochem Soc Trans. 1995 Nov;23(4):862–867. doi: 10.1042/bst0230862. [DOI] [PubMed] [Google Scholar]
  67. Wang X. The role of phospholipase D in signaling cascades . Plant Physiol. 1999 Jul;120(3):645–652. doi: 10.1104/pp.120.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wheeler L. A., Sachs G., De Vries G., Goodrum D., Woldemussie E., Muallem S. Manoalide, a natural sesterterpenoid that inhibits calcium channels. J Biol Chem. 1987 May 15;262(14):6531–6538. [PubMed] [Google Scholar]
  69. Xing T., Higgins V. J., Blumwald E. Regulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase. Plant Cell. 1996 Mar;8(3):555–564. doi: 10.1105/tpc.8.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES