Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Dec;11(12):2365–2377.

Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts.

B Müller 1, L A Eichacker 1
PMCID: PMC144137  PMID: 10590164

Abstract

Assembly of plastid-encoded chlorophyll binding proteins of photosystem II (PSII) was studied in etiolated barley seedlings and isolated etioplasts and either the absence or presence of de novo chlorophyll synthesis. De novo assembly of reaction center complexes in etioplasts was characterized by immunological analysis of protein complexes solubilized from inner etioplast membranes and separated in sucrose density gradients. Previously characterized membrane protein complexes from chloroplasts were utilized as molecular mass standards for sucrose density gradient separation analysis. In etiolated seedlings, induction of chlorophyll a synthesis resulted in the accumulation of D1 in a dimeric PSII reaction center (RCII) complex. In isolated etioplasts, de novo chlorophyll a synthesis directed accumulation of D1 precursor in a monomeric RCII precomplex that also included D2 and cytochrome b(559). Chlorophyll a synthesis that was chemically prolonged in darkness neither increased the yield of RCII monomers nor directed assembly of RCII dimers in etioplasts. We therefore conclude that in etioplasts, assembly of the D1 precursor in monomeric RCII precomplexes precedes chlorophyll a-triggered accumulation of reaction center monomers.

Full Text

The Full Text of this article is available as a PDF (731.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen K. D., Staehelin L. A. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991 Apr;194(1):214–222. doi: 10.1016/0003-2697(91)90170-x. [DOI] [PubMed] [Google Scholar]
  2. Anandan S., Morishige D. T., Thornber J. P. Light-induced biogenesis of light-harvesting complex I (LHC I) during chloroplast development in barley (hordeum vulgare). Studies using cDNA clones of the 21- and 20-kilodalton LHC I apoproteins. Plant Physiol. 1993 Jan;101(1):227–236. doi: 10.1104/pp.101.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassi R., Dainese P. A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem. 1992 Feb 15;204(1):317–326. doi: 10.1111/j.1432-1033.1992.tb16640.x. [DOI] [PubMed] [Google Scholar]
  4. Bassi R., Simpson D. Chlorophyll-protein complexes of barley photosystem I. Eur J Biochem. 1987 Mar 2;163(2):221–230. doi: 10.1111/j.1432-1033.1987.tb10791.x. [DOI] [PubMed] [Google Scholar]
  5. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  6. Breyton C., Tribet C., Olive J., Dubacq J. P., Popot J. L. Dimer to monomer conversion of the cytochrome b6 f complex. Causes and consequences. J Biol Chem. 1997 Aug 29;272(35):21892–21900. doi: 10.1074/jbc.272.35.21892. [DOI] [PubMed] [Google Scholar]
  7. Diner B. A., Ries D. F., Cohen B. N., Metz J. G. COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. J Biol Chem. 1988 Jun 25;263(18):8972–8980. [PubMed] [Google Scholar]
  8. Edhofer I., Mühlbauer S. K., Eichacker L. A. Light regulates the rate of translation elongation of chloroplast reaction center protein D1. Eur J Biochem. 1998 Oct 1;257(1):78–84. doi: 10.1046/j.1432-1327.1998.2570078.x. [DOI] [PubMed] [Google Scholar]
  9. Eichacker L. A., Helfrich M., Rüdiger W., Müller B. Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem. 1996 Dec 13;271(50):32174–32179. doi: 10.1074/jbc.271.50.32174. [DOI] [PubMed] [Google Scholar]
  10. Eichacker L. A., Müller B., Helfrich M. Stabilization of the chlorophyll binding apoproteins, P700, CP47, CP43, D2, and D1, by synthesis of Zn-pheophytin a in intact etioplasts from barley. FEBS Lett. 1996 Oct 21;395(2-3):251–256. doi: 10.1016/0014-5793(96)01026-5. [DOI] [PubMed] [Google Scholar]
  11. Eichacker L. A., Soll J., Lauterbach P., Rüdiger W., Klein R. R., Mullet J. E. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990 Aug 15;265(23):13566–13571. [PubMed] [Google Scholar]
  12. Eisenberg-Domovich Y., Oelmüller R., Herrmann R. G., Ohad I. Role of the RCII-D1 protein in the reversible association of the oxygen-evolving complex proteins with the lumenal side of photosystem II. J Biol Chem. 1995 Dec 15;270(50):30181–30186. doi: 10.1074/jbc.270.50.30181. [DOI] [PubMed] [Google Scholar]
  13. Fujita Y. Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol. 1996 Jun;37(4):411–421. doi: 10.1093/oxfordjournals.pcp.a028962. [DOI] [PubMed] [Google Scholar]
  14. Gall B., Zehetner A., Scherz A., Scheer H. Modification of pigment composition in the isolated reaction center of photosystem II. FEBS Lett. 1998 Aug 28;434(1-2):88–92. doi: 10.1016/s0014-5793(98)00956-9. [DOI] [PubMed] [Google Scholar]
  15. Hankamer B., Nield J., Zheleva D., Boekema E., Jansson S., Barber J. Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur J Biochem. 1997 Jan 15;243(1-2):422–429. doi: 10.1111/j.1432-1033.1997.0422a.x. [DOI] [PubMed] [Google Scholar]
  16. Hankamer Ben, Barber James, Boekema Egbert J. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):641–671. doi: 10.1146/annurev.arplant.48.1.641. [DOI] [PubMed] [Google Scholar]
  17. Helfrich M., Schoch S., Lempert U., Cmiel E., Rüdiger W. Chlorophyll synthetase cannot synthesize chlorophyll a'. Eur J Biochem. 1994 Jan 15;219(1-2):267–275. doi: 10.1111/j.1432-1033.1994.tb19938.x. [DOI] [PubMed] [Google Scholar]
  18. Herrin D. L., Battey J. F., Greer K., Schmidt G. W. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. J Biol Chem. 1992 Apr 25;267(12):8260–8269. [PubMed] [Google Scholar]
  19. Heukeshoven J., Dernick R. Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis. 1988 Jan;9(1):28–32. doi: 10.1002/elps.1150090106. [DOI] [PubMed] [Google Scholar]
  20. Hobe S., Prytulla S., Kühlbrandt W., Paulsen H. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J. 1994 Aug 1;13(15):3423–3429. doi: 10.1002/j.1460-2075.1994.tb06647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim J., Eichacker L. A., Rudiger W., Mullet J. E. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 1994 Mar;104(3):907–916. doi: 10.1104/pp.104.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim J., Mullet J. E. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation. Plant Mol Biol. 1994 Jun;25(3):437–448. doi: 10.1007/BF00043872. [DOI] [PubMed] [Google Scholar]
  23. Klein R. R., Mason H. S., Mullet J. E. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol. 1988 Feb;106(2):289–301. doi: 10.1083/jcb.106.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klein R. R., Mullet J. E. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem. 1986 Aug 25;261(24):11138–11145. [PubMed] [Google Scholar]
  25. Kuttkat A., Edhofer I., Eichacker L. A., Paulsen H. Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b. J Biol Chem. 1997 Aug 15;272(33):20451–20455. doi: 10.1074/jbc.272.33.20451. [DOI] [PubMed] [Google Scholar]
  26. Lorković Z. J., Schröder W. P., Pakrasi H. B., Irrgang K. D., Herrmann R. G., Oelmüller R. Molecular characterization of PsbW, a nuclear-encoded component of the photosystem II reaction center complex in spinach. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8930–8934. doi: 10.1073/pnas.92.19.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morais F., Barber J., Nixon P. J. The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii. J Biol Chem. 1998 Nov 6;273(45):29315–29320. doi: 10.1074/jbc.273.45.29315. [DOI] [PubMed] [Google Scholar]
  28. Mullet J. E., Klein P. G., Klein R. R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038–4042. doi: 10.1073/pnas.87.11.4038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mühlbauer S. K., Eichacker L. A. Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem. 1998 Aug 14;273(33):20935–20940. doi: 10.1074/jbc.273.33.20935. [DOI] [PubMed] [Google Scholar]
  30. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ohashi K., Tanaka A., Tsuji H. Formation of the Photosynthetic Electron Transport System during the Early Phase of Greening in Barley Leaves. Plant Physiol. 1989 Sep;91(1):409–414. doi: 10.1104/pp.91.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ranty B., Lundqvist T., Schneider G., Madden M., Howard R., Lorimer G. Truncation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum affects the holoenzyme assembly and activity. EMBO J. 1990 May;9(5):1365–1373. doi: 10.1002/j.1460-2075.1990.tb08251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rhee K. H., Morris E. P., Barber J., Kühlbrandt W. Three-dimensional structure of the plant photosystem II reaction centre at 8 A resolution. Nature. 1998 Nov 19;396(6708):283–286. doi: 10.1038/24421. [DOI] [PubMed] [Google Scholar]
  34. Rögner M., Boekema E. J., Barber J. How does photosystem 2 split water? The structural basis of efficient energy conversion. Trends Biochem Sci. 1996 Feb;21(2):44–49. doi: 10.1016/s0968-0004(96)80177-0. [DOI] [PubMed] [Google Scholar]
  35. Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991 Dec;199(2):223–231. doi: 10.1016/0003-2697(91)90094-a. [DOI] [PubMed] [Google Scholar]
  36. Summer E. J., Schmid V. H., Bruns B. U., Schmidt G. W. Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii. Plant Physiol. 1997 Apr;113(4):1359–1368. doi: 10.1104/pp.113.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tomo T., Enami I., Satoh K. Orientation and nearest neighbor analysis of psbI gene product in the photosystem II reaction center complex using bifunctional cross-linkers. FEBS Lett. 1993 May 24;323(1-2):15–18. doi: 10.1016/0014-5793(93)81438-6. [DOI] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trost J. T., Chisholm D. A., Jordan D. B., Diner B. A. The D1 C-terminal processing protease of photosystem II from Scenedesmus obliquus. Protein purification and gene characterization in wild type and processing mutants. J Biol Chem. 1997 Aug 15;272(33):20348–20356. doi: 10.1074/jbc.272.33.20348. [DOI] [PubMed] [Google Scholar]
  40. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wellburn A. R., Hampp R. Appearance of photochemical function in prothylakoids during plastid development. Biochim Biophys Acta. 1979 Aug 14;547(2):380–397. doi: 10.1016/0005-2728(79)90019-7. [DOI] [PubMed] [Google Scholar]
  42. Yamamoto Y., Satoh K. Competitive inhibition analysis of the enzyme-substrate interaction in the carboxy-terminal processing of the precursor D1 protein of photosystem II reaction center using substituted oligopeptides. FEBS Lett. 1998 Jul 3;430(3):261–265. doi: 10.1016/s0014-5793(98)00671-1. [DOI] [PubMed] [Google Scholar]
  43. Zheleva D., Hankamer B., Barber J. Heterogeneity and pigment composition of isolated photosystem II reaction centers. Biochemistry. 1996 Nov 26;35(47):15074–15079. doi: 10.1021/bi961382h. [DOI] [PubMed] [Google Scholar]
  44. van Wijk K. J., Eichacker L. Light is required for efficient translation elongation and subsequent integration of the D1-protein into photosystem II. FEBS Lett. 1996 Jun 17;388(2-3):89–93. doi: 10.1016/0014-5793(96)00540-6. [DOI] [PubMed] [Google Scholar]
  45. van Wijk K. J., Roobol-Boza M., Kettunen R., Andersson B., Aro E. M. Synthesis and assembly of the D1 protein into photosystem II: processing of the C-terminus and identification of the initial assembly partners and complexes during photosystem II repair. Biochemistry. 1997 May 20;36(20):6178–6186. doi: 10.1021/bi962921l. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES