Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Dec;11(12):2331–2347. doi: 10.1105/tpc.11.12.2331

Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis.

D B Szymanski 1, M D Marks 1, S M Wick 1
PMCID: PMC144140  PMID: 10590162

Abstract

Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessa L., Kropf D. L. F-actin marks the rhizoid pole in living Pelvetia compressa zygotes. Development. 1999 Jan;126(1):201–209. doi: 10.1242/dev.126.1.201. [DOI] [PubMed] [Google Scholar]
  2. An Y. Q., Huang S., McDowell J. M., McKinney E. C., Meagher R. B. Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. Plant Cell. 1996 Jan;8(1):15–30. doi: 10.1105/tpc.8.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. An Y. Q., McDowell J. M., Huang S., McKinney E. C., Chambliss S., Meagher R. B. Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J. 1996 Jul;10(1):107–121. doi: 10.1046/j.1365-313x.1996.10010107.x. [DOI] [PubMed] [Google Scholar]
  4. Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
  5. Baskin T. I., Bivens N. J. Stimulation of radial expansion in arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta. 1995;197(3):514–521. doi: 10.1007/BF00196673. [DOI] [PubMed] [Google Scholar]
  6. Bender H A. Studies on the Expression of Various Singed Alleles in Drosophila Melanogaster. Genetics. 1960 Jul;45(7):867–883. doi: 10.1093/genetics/45.7.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brawley S. H., Robinson K. R. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell Biol. 1985 Apr;100(4):1173–1184. doi: 10.1083/jcb.100.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cant K., Knowles B. A., Mooseker M. S., Cooley L. Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J Cell Biol. 1994 Apr;125(2):369–380. doi: 10.1083/jcb.125.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlier M. F., Laurent V., Santolini J., Melki R., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997 Mar 24;136(6):1307–1322. doi: 10.1083/jcb.136.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  12. Drubin D. G., Nelson W. J. Origins of cell polarity. Cell. 1996 Feb 9;84(3):335–344. doi: 10.1016/s0092-8674(00)81278-7. [DOI] [PubMed] [Google Scholar]
  13. Fankhauser C., Chory J. Light control of plant development. Annu Rev Cell Dev Biol. 1997;13:203–229. doi: 10.1146/annurev.cellbio.13.1.203. [DOI] [PubMed] [Google Scholar]
  14. FitzGibbon T., Reese B. E. Position of growth cones within the retinal nerve fibre layer of fetal ferrets. J Comp Neurol. 1992 Sep 8;323(2):153–166. doi: 10.1002/cne.903230203. [DOI] [PubMed] [Google Scholar]
  15. Foissner I., Lichtscheidl I. K., Wasteneys G. O. Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells. Cell Motil Cytoskeleton. 1996;35(1):35–48. doi: 10.1002/(SICI)1097-0169(1996)35:1<35::AID-CM3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  16. Folkers U., Berger J., Hülskamp M. Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development. 1997 Oct;124(19):3779–3786. doi: 10.1242/dev.124.19.3779. [DOI] [PubMed] [Google Scholar]
  17. Gilliland L. U., McKinney E. C., Asmussen M. A., Meagher R. B. Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes. Genetics. 1998 Jun;149(2):717–725. doi: 10.1093/genetics/149.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hable W. E., Kropf D. L. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev Biol. 1998 Jun 1;198(1):45–56. [PubMed] [Google Scholar]
  19. Hopmann R., Cooper J. A., Miller K. G. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila. J Cell Biol. 1996 Jun;133(6):1293–1305. doi: 10.1083/jcb.133.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hugdahl J. D., Morejohn L. C. Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L. Plant Physiol. 1993 Jul;102(3):725–740. doi: 10.1104/pp.102.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hülskamp M., Misŕa S., Jürgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994 Feb 11;76(3):555–566. doi: 10.1016/0092-8674(94)90118-x. [DOI] [PubMed] [Google Scholar]
  22. Jiang C. J., Weeds A. G., Hussey P. J. The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J. 1997 Nov;12(5):1035–1043. doi: 10.1046/j.1365-313x.1997.12051035.x. [DOI] [PubMed] [Google Scholar]
  23. Kost B., Spielhofer P., Chua N. H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998 Nov;16(3):393–401. doi: 10.1046/j.1365-313x.1998.00304.x. [DOI] [PubMed] [Google Scholar]
  24. Larkin J. C., Marks M. D., Nadeau J., Sack F. Epidermal cell fate and patterning in leaves. Plant Cell. 1997 Jul;9(7):1109–1120. doi: 10.1105/tpc.9.7.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Larkin J. C., Oppenheimer D. G., Marks M. D. The GL1 gene and the trichome developmental pathway in Arabidopsis thaliana. Results Probl Cell Differ. 1994;20:259–275. doi: 10.1007/978-3-540-48037-2_12. [DOI] [PubMed] [Google Scholar]
  26. Larkin J. C., Young N., Prigge M., Marks M. D. The control of trichome spacing and number in Arabidopsis. Development. 1996 Mar;122(3):997–1005. doi: 10.1242/dev.122.3.997. [DOI] [PubMed] [Google Scholar]
  27. Lloyd A. M., Schena M., Walbot V., Davis R. W. Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science. 1994 Oct 21;266(5184):436–439. doi: 10.1126/science.7939683. [DOI] [PubMed] [Google Scholar]
  28. Marks M. David. MOLECULAR GENETIC ANALYSIS OF TRICHOME DEVELOPMENT IN ARABIDOPSIS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):137–163. doi: 10.1146/annurev.arplant.48.1.137. [DOI] [PubMed] [Google Scholar]
  29. Mascarenhas J. P., Lafountain J. Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell. 1972;4(1):11–14. doi: 10.1016/s0040-8166(72)80002-8. [DOI] [PubMed] [Google Scholar]
  30. Masucci J. D., Rerie W. G., Foreman D. R., Zhang M., Galway M. E., Marks M. D., Schiefelbein J. W. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development. 1996 Apr;122(4):1253–1260. doi: 10.1242/dev.122.4.1253. [DOI] [PubMed] [Google Scholar]
  31. McDowell J. M., An Y. Q., Huang S., McKinney E. C., Meagher R. B. The arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol. 1996 Jul;111(3):699–711. doi: 10.1104/pp.111.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Narasimhulu S. B., Reddy A. S. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell. 1998 Jun;10(6):957–965. doi: 10.1105/tpc.10.6.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oppenheimer D. G., Pollock M. A., Vacik J., Szymanski D. B., Ericson B., Feldmann K., Marks M. D. Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6261–6266. doi: 10.1073/pnas.94.12.6261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palevitz B. A. Morphological Plasticity of the Mitotic Apparatus in Plants and Its Developmental Consequences. Plant Cell. 1993 Sep;5(9):1001–1009. doi: 10.1105/tpc.5.9.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Picton J. M., Steer M. W. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci. 1981 Jun;49:261–272. doi: 10.1242/jcs.49.1.261. [DOI] [PubMed] [Google Scholar]
  36. Quatrano R. S. Separation of processes associated with differentiation of two-celled Fucus embryos. Dev Biol. 1973 Jan;30(1):209–213. doi: 10.1016/0012-1606(73)90059-6. [DOI] [PubMed] [Google Scholar]
  37. Song H., Golovkin M., Reddy A. S., Endow S. A. In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):322–327. doi: 10.1073/pnas.94.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Szymanski D. B., Jilk R. A., Pollock S. M., Marks M. D. Control of GL2 expression in Arabidopsis leaves and trichomes. Development. 1998 Apr;125(7):1161–1171. doi: 10.1242/dev.125.7.1161. [DOI] [PubMed] [Google Scholar]
  39. Szymanski D. B., Marks M. D. GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell. 1998 Dec;10(12):2047–2062. doi: 10.1105/tpc.10.12.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tilney L. G., Connelly P., Smith S., Guild G. M. F-actin bundles in Drosophila bristles are assembled from modules composed of short filaments. J Cell Biol. 1996 Dec;135(5):1291–1308. doi: 10.1083/jcb.135.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tilney L. G., Tilney M. S., Guild G. M. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J Cell Biol. 1995 Aug;130(3):629–638. doi: 10.1083/jcb.130.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Verheyen E. M., Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 1994 Apr;120(4):717–728. doi: 10.1242/dev.120.4.717. [DOI] [PubMed] [Google Scholar]
  43. Wang Q. Y., Nick P. The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma. 1998;204(1-2):22–33. doi: 10.1007/BF01282290. [DOI] [PubMed] [Google Scholar]
  44. Wasteneys G. O., Willingale-Theune J., Menzel D. Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc. 1997 Oct;188(Pt 1):51–61. doi: 10.1046/j.1365-2818.1977.2390796.x. [DOI] [PubMed] [Google Scholar]
  45. Woeste K., Kieber J. J. The molecular basis of ethylene signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci. 1998 Sep 29;353(1374):1431–1438. doi: 10.1098/rstb.1998.0298. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES