Abstract
Victorin is a host-selective toxin produced by Cochliobolus victoriae, the causal agent of victoria blight of oats. Previously, victorin was shown to be bound specifically by two proteins of the mitochondrial glycine decarboxylase complex, at least one of which binds victorin only in toxin-sensitive genotypes in vivo. This enzyme complex is involved in the photorespiratory cycle and is inhibited by victorin, with an effective concentration for 50% inhibition of 81 pM. The photorespiratory cycle begins with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and victorin was found to induce a specific proteolytic cleavage of the Rubisco large subunit (LSU). Leaf slices incubated with victorin for 4 hr in the dark accumulated a form of the LSU that is cleaved after the 14th amino acid. This proteolytic cleavage was prevented by the protease inhibitors E-64 and calpeptin. Another primary symptom of victorin treatment is chlorophyll loss, which along with the specific LSU cleavage is suggestive of a victorin-induced, senescence-like response. DNA from victorin-treated leaf slices showed a pronounced laddering effect, which is typical of apoptosis. Calcium appeared to play a role in mediating the plant response to victorin because LaCl3 gave near-complete protection against victorin, preventing both leaf symptoms and LSU cleavage. The ethylene inhibitors aminooxyacetic acid and silver thiosulfate also gave significant protection against victorin-induced leaf symptoms and prevented LSU cleavage. The symptoms resulting from victorin treatment suggest that victorin causes premature senescence of leaves.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharoni N., Anderson J. D., Lieberman M. Production and action of ethylene in senescing leaf discs: effect of indoleacetic Acid, kinetin, silver ion, and carbon dioxide. Plant Physiol. 1979 Nov;64(5):805–809. doi: 10.1104/pp.64.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arntzen C. J., Haugh M. F., Bobick S. Induction of Stomatal Closure by Helminthosporium maydis Pathotoxin. Plant Physiol. 1973 Dec;52(6):569–574. doi: 10.1104/pp.52.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini M., Wymann M. P. Turning on the respiratory burst. Trends Biochem Sci. 1990 Feb;15(2):69–72. doi: 10.1016/0968-0004(90)90179-f. [DOI] [PubMed] [Google Scholar]
- Bhullar B. S., Daly J. M., Rehfeld D. W. Inhibition of Dark CO(2) Fixation and Photosynthesis in Leaf Discs of Corn Susceptible to the Host-specific Toxin Produced by Helminthosporium maydis, Race T. Plant Physiol. 1975 Jul;56(1):1–7. doi: 10.1104/pp.56.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackwell R. D., Murray A. J., Lea P. J. Photorespiratory mutants of the mitochondrial conversion of glycine to serine. Plant Physiol. 1990 Nov;94(3):1316–1322. doi: 10.1104/pp.94.3.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bushnell T. P., Bushnell D., Jagendorf A. T. A Purified Zinc Protease of Pea Chloroplasts, EP1, Degrades the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 1993 Oct;103(2):585–591. doi: 10.1104/pp.103.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gepstein S., Thimann K. V. The role of ethylene in the senescence of oat leaves. Plant Physiol. 1981 Aug;68(2):349–354. doi: 10.1104/pp.68.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg J. T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12094–12097. doi: 10.1073/pnas.93.22.12094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregori L., Marriott D., Putkey J. A., Means A. R., Chau V. Bacterially synthesized vertebrate calmodulin is a specific substrate for ubiquitination. J Biol Chem. 1987 Feb 25;262(6):2562–2567. [PubMed] [Google Scholar]
- Hensel L. L., Grbić V., Baumgarten D. A., Bleecker A. B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis. Plant Cell. 1993 May;5(5):553–564. doi: 10.1105/tpc.5.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houtz R. L., Poneleit L., Jones S. B., Royer M., Stults J. T. Posttranslational modifications in the amino- terminal region of the large subunit of ribulose- 1,5-bisphosphate carboxylase/oxygenase from several plant species. Plant Physiol. 1992 Mar;98(3):1170–1174. doi: 10.1104/pp.98.3.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson G. S., Mahon J. D., Anderson P. A., Gibbs M. J., Badger M. R., Andrews T. J., Whitfeld P. R. Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J Biol Chem. 1990 Jan 15;265(2):808–814. [PubMed] [Google Scholar]
- Landry L. G., Pell E. J. Modification of Rubisco and Altered Proteolytic Activity in O3-Stressed Hybrid Poplar (Populus maximowizii x trichocarpa). Plant Physiol. 1993 Apr;101(4):1355–1362. doi: 10.1104/pp.101.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macko K. A., Hodos W. Near point of accommodation in pigeons. Vision Res. 1985;25(10):1529–1530. doi: 10.1016/0042-6989(85)90232-9. [DOI] [PubMed] [Google Scholar]
- Martin C., Thimann K. V. Role of Protein Synthesis in the Senescence of Leaves: II. The Influence of Amino Acids on Senescence. Plant Physiol. 1972 Oct;50(4):432–437. doi: 10.1104/pp.50.4.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. J., Green D. R., Cotter T. G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci. 1994 Jan;19(1):26–30. doi: 10.1016/0968-0004(94)90170-8. [DOI] [PubMed] [Google Scholar]
- Meehan F., Murphy H. C. A New Helminthosporium Blight of Oats. Science. 1946 Nov 1;104(2705):413–414. doi: 10.1126/science.104.2705.413. [DOI] [PubMed] [Google Scholar]
- Meehan F., Murphy H. C. Differential Phytotoxicity of Metabolic By-Products of Helminthosporium victoriae. Science. 1947 Sep 19;106(2751):270–271. doi: 10.1126/science.106.2751.270-a. [DOI] [PubMed] [Google Scholar]
- Mehta R. A., Fawcett T. W., Porath D., Mattoo A. K. Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem. 1992 Feb 5;267(4):2810–2816. [PubMed] [Google Scholar]
- Mignotte B., Vayssiere J. L. Mitochondria and apoptosis. Eur J Biochem. 1998 Feb 15;252(1):1–15. doi: 10.1046/j.1432-1327.1998.2520001.x. [DOI] [PubMed] [Google Scholar]
- Mulligan R. M., Houtz R. L., Tolbert N. E. Reaction-intermediate analogue binding by ribulose bisphosphate carboxylase/oxygenase causes specific changes in proteolytic sensitivity: the amino-terminal residue of the large subunit is acetylated proline. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1513–1517. doi: 10.1073/pnas.85.5.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Musgrove J. E., Elderfield P. D., Robinson C. Endopeptidases in the stroma and thylakoids of pea chloroplasts. Plant Physiol. 1989 Aug;90(4):1616–1621. doi: 10.1104/pp.90.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navarre D. A., Wolpert T. J. Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin. Plant Cell. 1995 Apr;7(4):463–471. doi: 10.1105/tpc.7.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peever T. L., Higgins V. J. Electrolyte Leakage, Lipoxygenase, and Lipid Peroxidation Induced in Tomato Leaf Tissue by Specific and Nonspecific Elicitors from Cladosporium fulvum. Plant Physiol. 1989 Jul;90(3):867–875. doi: 10.1104/pp.90.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purohit A. N., Tregunna E. B., Ragetli H. W. CO2 effects on local-lesion production by tobacco mosaic virus and turnip mosaic virus. Virology. 1975 Jun;65(2):558–564. doi: 10.1016/0042-6822(75)90060-4. [DOI] [PubMed] [Google Scholar]
- Raz V., Fluhr R. Calcium Requirement for Ethylene-Dependent Responses. Plant Cell. 1992 Sep;4(9):1123–1130. doi: 10.1105/tpc.4.9.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossé T., Olivier R., Monney L., Rager M., Conus S., Fellay I., Jansen B., Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 1998 Jan 29;391(6666):496–499. doi: 10.1038/35160. [DOI] [PubMed] [Google Scholar]
- Satler S. O., Thimann K. V. Metabolism of Oat Leaves during Senescence : VII. The Interaction of Carbon Dioxide and Other Atmospheric Gases with Light in Controlling Chlorophyll Loss and Senescence. Plant Physiol. 1983 Jan;71(1):67–70. doi: 10.1104/pp.71.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scandalios J. G. Oxygen Stress and Superoxide Dismutases. Plant Physiol. 1993 Jan;101(1):7–12. doi: 10.1104/pp.101.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville C. R., Ogren W. L. Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity. Biochem J. 1982 Feb 15;202(2):373–380. doi: 10.1042/bj2020373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stäb M. R., Ebel J. Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys. 1987 Sep;257(2):416–423. doi: 10.1016/0003-9861(87)90585-6. [DOI] [PubMed] [Google Scholar]
- Thimann K. V., Satler S. Relation between senescence and stomatal opening: Senescence in darkness. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2770–2773. doi: 10.1073/pnas.76.6.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich C. I., Novacky A. J. Electrical Membrane Properties of Leaves, Roots, and Single Root Cap Cells of Susceptible Avena sativa: Effect of Victorin C. Plant Physiol. 1991 Mar;95(3):675–681. doi: 10.1104/pp.95.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H., Li J., Bostock R. M., Gilchrist D. G. Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development. Plant Cell. 1996 Mar;8(3):375–391. doi: 10.1105/tpc.8.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward J. M., Schroeder J. I. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure. Plant Cell. 1994 May;6(5):669–683. doi: 10.1105/tpc.6.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler H., Black H. S. Changes in Permeability Induced by Victorin. Science. 1962 Sep 21;137(3534):983–984. doi: 10.1126/science.137.3534.983. [DOI] [PubMed] [Google Scholar]
- Widholm J. M., Ogren W. L. Photorespiratory-induced senescence of plants under conditions of low carbon dioxide. Proc Natl Acad Sci U S A. 1969 Jul;63(3):668–675. doi: 10.1073/pnas.63.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolpert T. J., Macko V. Specific binding of victorin to a 100-kDa protein from oats. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4092–4096. doi: 10.1073/pnas.86.11.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolpert T. J., Navarre D. A., Moore D. L., Macko V. Identification of the 100-kD victorin binding protein from oats. Plant Cell. 1994 Aug;6(8):1145–1155. doi: 10.1105/tpc.6.8.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]