Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jun;11(6):1141–1152. doi: 10.1105/tpc.11.6.1141

ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells

N Leonhardt 1, A Vavasseur 1, C Forestier 1
PMCID: PMC144242  PMID: 10368184

Abstract

In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells.

Full Text

The Full Text of this article is available as a PDF (188.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell. 1994 Sep;6(9):1319–1328. doi: 10.1105/tpc.6.9.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft S. J., Ashcroft F. M. The sulfonylurea receptor. Biochim Biophys Acta. 1992 Dec 15;1175(1):45–59. doi: 10.1016/0167-4889(92)90008-y. [DOI] [PubMed] [Google Scholar]
  3. Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
  4. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  5. Cheng S. H., Rich D. P., Marshall J., Gregory R. J., Welsh M. J., Smith A. E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991 Sep 6;66(5):1027–1036. doi: 10.1016/0092-8674(91)90446-6. [DOI] [PubMed] [Google Scholar]
  6. Cliff W. H., Frizzell R. A. Separate Cl- conductances activated by cAMP and Ca2+ in Cl(-)-secreting epithelial cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4956–4960. doi: 10.1073/pnas.87.13.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cliff W. H., Schoumacher R. A., Frizzell R. A. cAMP-activated Cl channels in CFTR-transfected cystic fibrosis pancreatic epithelial cells. Am J Physiol. 1992 May;262(5 Pt 1):C1154–C1160. doi: 10.1152/ajpcell.1992.262.5.C1154. [DOI] [PubMed] [Google Scholar]
  8. Cunningham S. A., Worrell R. T., Benos D. J., Frizzell R. A. cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA. Am J Physiol. 1992 Mar;262(3 Pt 1):C783–C788. doi: 10.1152/ajpcell.1992.262.3.C783. [DOI] [PubMed] [Google Scholar]
  9. Davies T. G., Theodoulou F. L., Hallahan D. L., Forde B. G. Cloning and characterisation of a novel P-glycoprotein homologue from barley. Gene. 1997 Oct 15;199(1-2):195–202. doi: 10.1016/s0378-1119(97)00367-3. [DOI] [PubMed] [Google Scholar]
  10. Demolombe S., Escande D. ATP-binding cassette proteins as targets for drug discovery. Trends Pharmacol Sci. 1996 Aug;17(8):273–275. doi: 10.1016/0165-6147(96)10037-7. [DOI] [PubMed] [Google Scholar]
  11. Dudler R., Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. J Biol Chem. 1992 Mar 25;267(9):5882–5888. [PubMed] [Google Scholar]
  12. Findlay I. Inhibition of ATP-sensitive K+ channels in cardiac muscle by the sulphonylurea drug glibenclamide. J Pharmacol Exp Ther. 1992 May;261(2):540–545. [PubMed] [Google Scholar]
  13. Fischer H., Machen T. E. CFTR displays voltage dependence and two gating modes during stimulation. J Gen Physiol. 1994 Sep;104(3):541–566. doi: 10.1085/jgp.104.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forestier C., Bouteau F., Leonhardt N., Vavasseur A. Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. Pflugers Arch. 1998 Nov;436(6):920–927. doi: 10.1007/s004240050724. [DOI] [PubMed] [Google Scholar]
  15. Forestier C., Pierrard J., Vivaudou M. Mechanism of action of K channel openers on skeletal muscle KATP channels. Interactions with nucleotides and protons. J Gen Physiol. 1996 Apr;107(4):489–502. doi: 10.1085/jgp.107.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haws C., Finkbeiner W. E., Widdicombe J. H., Wine J. J. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance. Am J Physiol. 1994 May;266(5 Pt 1):L502–L512. doi: 10.1152/ajplung.1994.266.5.L502. [DOI] [PubMed] [Google Scholar]
  18. Hedrich R., Busch H., Raschke K. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J. 1990 Dec;9(12):3889–3892. doi: 10.1002/j.1460-2075.1990.tb07608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  20. Higgins C. F. The ABC of channel regulation. Cell. 1995 Sep 8;82(5):693–696. doi: 10.1016/0092-8674(95)90465-4. [DOI] [PubMed] [Google Scholar]
  21. Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
  22. Ishida-Takahashi A., Otani H., Takahashi C., Washizuka T., Tsuji K., Noda M., Horie M., Sasayama S. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. J Physiol. 1998 Apr 1;508(Pt 1):23–30. doi: 10.1111/j.1469-7793.1998.023br.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lawson K. Potassium channel activation: a potential therapeutic approach? Pharmacol Ther. 1996;70(1):39–63. doi: 10.1016/0163-7258(96)00003-4. [DOI] [PubMed] [Google Scholar]
  24. Lazdunski M. Ion channel effects of antidiabetic sulfonylureas. Horm Metab Res. 1996 Sep;28(9):488–495. doi: 10.1055/s-2007-979840. [DOI] [PubMed] [Google Scholar]
  25. Leonhardt N., Marin E., Vavasseur A., Forestier C. Evidence for the existence of a sulfonylurea-receptor-like protein in plants: modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14156–14161. doi: 10.1073/pnas.94.25.14156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lu Y. P., Li Z. S., Drozdowicz Y. M., Hortensteiner S., Martinoia E., Rea P. A. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1. Plant Cell. 1998 Feb;10(2):267–282. doi: 10.1105/tpc.10.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lu Y. P., Li Z. S., Rea P. A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8243–8248. doi: 10.1073/pnas.94.15.8243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Luzi L., Pozza G. Glibenclamide: an old drug with a novel mechanism of action? Acta Diabetol. 1997 Dec;34(4):239–244. doi: 10.1007/s005920050081. [DOI] [PubMed] [Google Scholar]
  29. Madon J., Eckhardt U., Gerloff T., Stieger B., Meier P. J. Functional expression of the rat liver canalicular isoform of the multidrug resistance-associated protein. FEBS Lett. 1997 Apr 7;406(1-2):75–78. doi: 10.1016/s0014-5793(97)00245-7. [DOI] [PubMed] [Google Scholar]
  30. Marin E., Leonhardt N., Vavasseur A., Forestier C. Cloning of AtMRP1, an Arabidopsis thaliana cDNA encoding a homologue of the mammalian multidrug resistance-associated protein. Biochim Biophys Acta. 1998 Feb 2;1369(1):7–13. doi: 10.1016/s0005-2736(97)00213-7. [DOI] [PubMed] [Google Scholar]
  31. Marten I., Zeilinger C., Redhead C., Landry D. W., al-Awqati Q., Hedrich R. Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J. 1992 Oct;11(10):3569–3575. doi: 10.1002/j.1460-2075.1992.tb05440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McCarty N. A., McDonough S., Cohen B. N., Riordan J. R., Davidson N., Lester H. A. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates. J Gen Physiol. 1993 Jul;102(1):1–23. doi: 10.1085/jgp.102.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McNicholas C. M., Guggino W. B., Schwiebert E. M., Hebert S. C., Giebisch G., Egan M. E. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8083–8088. doi: 10.1073/pnas.93.15.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meyer K., Korbmacher C. Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells. J Gen Physiol. 1996 Sep;108(3):177–193. doi: 10.1085/jgp.108.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Panten U., Schwanstecher M., Schwanstecher C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp Clin Endocrinol Diabetes. 1996;104(1):1–9. doi: 10.1055/s-0029-1211414. [DOI] [PubMed] [Google Scholar]
  36. Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell. 1997 Mar;9(3):409–423. doi: 10.1105/tpc.9.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rea Philip A., Li Ze-Sheng, Lu Yu-Ping, Drozdowicz Yolanda M., Martinoia Enrico. FROM VACUOLAR GS-X PUMPS TO MULTISPECIFIC ABC TRANSPORTERS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):727–760. doi: 10.1146/annurev.arplant.49.1.727. [DOI] [PubMed] [Google Scholar]
  38. Ruknudin A., Schulze D. H., Sullivan S. K., Lederer W. J., Welling P. A. Novel subunit composition of a renal epithelial KATP channel. J Biol Chem. 1998 Jun 5;273(23):14165–14171. doi: 10.1074/jbc.273.23.14165. [DOI] [PubMed] [Google Scholar]
  39. Schmid-Antomarchi H., De Weille J., Fosset M., Lazdunski M. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem. 1987 Nov 25;262(33):15840–15844. [PubMed] [Google Scholar]
  40. Schmidt C., Schelle I., Liao Y. J., Schroeder J. I. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9535–9539. doi: 10.1073/pnas.92.21.9535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schroeder J. I. Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Mol Biol. 1995 Jun;28(3):353–361. doi: 10.1007/BF00020385. [DOI] [PubMed] [Google Scholar]
  42. Schroeder J. I., Keller B. U. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5025–5029. doi: 10.1073/pnas.89.11.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schroeder J. I., Schmidt C., Sheaffer J. Identification of High-Affinity Slow Anion Channel Blockers and Evidence for Stomatal Regulation by Slow Anion Channels in Guard Cells. Plant Cell. 1993 Dec;5(12):1831–1841. doi: 10.1105/tpc.5.12.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schultz B. D., DeRoos A. D., Venglarik C. J., Singh A. K., Frizzell R. A., Bridges R. J. Glibenclamide blockade of CFTR chloride channels. Am J Physiol. 1996 Aug;271(2 Pt 1):L192–L200. doi: 10.1152/ajplung.1996.271.2.L192. [DOI] [PubMed] [Google Scholar]
  45. Schwanstecher M., Sieverding C., Dörschner H., Gross I., Aguilar-Bryan L., Schwanstecher C., Bryan J. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J. 1998 Oct 1;17(19):5529–5535. doi: 10.1093/emboj/17.19.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schwartz A., Ilan N., Schwarz M., Scheaffer J., Assmann S. M., Schroeder J. I. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells. Plant Physiol. 1995 Oct;109(2):651–658. doi: 10.1104/pp.109.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schwartz A. Role of Ca and EGTA on Stomatal Movements in Commelina communis L. Plant Physiol. 1985 Dec;79(4):1003–1005. doi: 10.1104/pp.79.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schwarz M., Schroeder J. I. Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells. FEBS Lett. 1998 May 29;428(3):177–182. doi: 10.1016/s0014-5793(98)00526-2. [DOI] [PubMed] [Google Scholar]
  49. Schwiebert E. M., Flotte T., Cutting G. R., Guggino W. B. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol. 1994 May;266(5 Pt 1):C1464–C1477. doi: 10.1152/ajpcell.1994.266.5.C1464. [DOI] [PubMed] [Google Scholar]
  50. Sheppard D. N., Welsh M. J. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol. 1992 Oct;100(4):573–591. doi: 10.1085/jgp.100.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sidler M, Hassa P, Hasan S, Ringli C, Dudler R. Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light . Plant Cell. 1998 Oct;10(10):1623–1636. doi: 10.1105/tpc.10.10.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Smart C. C., Fleming A. J. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J Biol Chem. 1996 Aug 9;271(32):19351–19357. doi: 10.1074/jbc.271.32.19351. [DOI] [PubMed] [Google Scholar]
  53. Sánchez-Fernández R., Ardiles-Díaz W., Van Montagu M., Inzé D., May M. J. Cloning and expression analyses of AtMRP4, a novel MRP-like gene from Arabidopsis thaliana. Mol Gen Genet. 1998 Jun;258(6):655–662. doi: 10.1007/s004380050779. [DOI] [PubMed] [Google Scholar]
  54. Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
  55. Tommasini R., Vogt E., Fromenteau M., Hörtensteiner S., Matile P., Amrhein N., Martinoia E. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J. 1998 Mar;13(6):773–780. doi: 10.1046/j.1365-313x.1998.00076.x. [DOI] [PubMed] [Google Scholar]
  56. Tommasini R., Vogt E., Schmid J., Fromentau M., Amrhein N., Martinoia E. Differential expression of genes coding for ABC transporters after treatment of Arabidopsis thaliana with xenobiotics. FEBS Lett. 1997 Jul 14;411(2-3):206–210. doi: 10.1016/s0014-5793(97)00702-3. [DOI] [PubMed] [Google Scholar]
  57. Valverde M. A., O'Brien J. A., Sepúlveda F. V., Ratcliff R. A., Evans M. J., Colledge W. H. Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9038–9041. doi: 10.1073/pnas.92.20.9038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ward J. M., Pei Z. M., Schroeder J. I. Roles of Ion Channels in Initiation of Signal Transduction in Higher Plants. Plant Cell. 1995 Jul;7(7):833–844. doi: 10.1105/tpc.7.7.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. van Kuijck M. A., van Aubel R. A., Busch A. E., Lang F., Russel F. G., Bindels R. J., van Os C. H., Deen P. M. Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5401–5406. doi: 10.1073/pnas.93.11.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES