Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jul;11(7):1239–1252. doi: 10.1105/tpc.11.7.1239

Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity.

T Foster 1, J Yamaguchi 1, B C Wong 1, B Veit 1, S Hake 1
PMCID: PMC144276  PMID: 10402426

Abstract

Maize leaves have a stereotypical pattern of cell types organized into discrete domains. These domains are altered by mutations in knotted1 (kn1) and knox (for kn1-like homeobox) genes. Gnarley (Gn1) is a dominant maize mutant that exhibits many of the phenotypic characteristics of the kn1 family of mutants. Gn1 is unique because it changes parameters of cell growth in the basal-most region of the leaf, the sheath, resulting in dramatically altered sheath morphology. The strongly expressive allele Gn1-R also gives rise to a floral phenotype in which ectopic carpels form. Introgression studies showed that the severity of the Gn1-conferred phenotype is strongly influenced by genetic background. Gn1 maps to knox4, and knox4 is ectopically expressed in plants with the Gn1-conferred phenotype. Immunolocalization experiments showed that the KNOX protein accumulates at the base of Gn1 leaves in a pattern that is spatially and temporally correlated with appearance of the mutant phenotype. We further demonstrate that Gn1 is knox4 by correlating loss of the mutant phenotype with insertion of a Mutator transposon into knox4.

Full Text

The Full Text of this article is available as a PDF (743.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becraft P. W., Bongard-Pierce D. K., Sylvester A. W., Poethig R. S., Freeling M. The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol. 1990 Sep;141(1):220–232. doi: 10.1016/0012-1606(90)90117-2. [DOI] [PubMed] [Google Scholar]
  3. Becraft P. W., Freeling M. Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics. 1994 Jan;136(1):295–311. doi: 10.1093/genetics/136.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  5. Christensen A. H., Sharrock R. A., Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992 Feb;18(4):675–689. doi: 10.1007/BF00020010. [DOI] [PubMed] [Google Scholar]
  6. Das L., Martienssen R. Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell. 1995 Mar;7(3):287–294. doi: 10.1105/tpc.7.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster T., Veit B., Hake S. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development. Development. 1999 Jan;126(2):305–313. doi: 10.1242/dev.126.2.305. [DOI] [PubMed] [Google Scholar]
  8. Fowler J. E., Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet. 1996;18(3):198–222. doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  9. Freeling M., Hake S. Developmental genetics of mutants that specify knotted leaves in maize. Genetics. 1985 Nov;111(3):617–634. doi: 10.1093/genetics/111.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaut B. S., Doebley J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6809–6814. doi: 10.1073/pnas.94.13.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hake S., Vollbrecht E., Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 1989 Jan;8(1):15–22. doi: 10.1002/j.1460-2075.1989.tb03343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harper L., Freeling M. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics. 1996 Dec;144(4):1871–1882. doi: 10.1093/genetics/144.4.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerstetter R. A., Laudencia-Chingcuanco D., Smith L. G., Hake S. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development. 1997 Aug;124(16):3045–3054. doi: 10.1242/dev.124.16.3045. [DOI] [PubMed] [Google Scholar]
  16. Kerstetter R., Vollbrecht E., Lowe B., Veit B., Yamaguchi J., Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell. 1994 Dec;6(12):1877–1887. doi: 10.1105/tpc.6.12.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  18. Mathern J., Hake S. Mu element-generated gene conversions in maize attenuate the dominant knotted phenotype. Genetics. 1997 Sep;147(1):305–314. doi: 10.1093/genetics/147.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McHale N. A. LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris. Plant Cell. 1993 Sep;5(9):1029–1038. doi: 10.1105/tpc.5.9.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Muehlbauer G. J., Fowler J. E., Freeling M. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Development. 1997 Dec;124(24):5097–5106. doi: 10.1242/dev.124.24.5097. [DOI] [PubMed] [Google Scholar]
  21. Müller K. J., Romano N., Gerstner O., Garcia-Maroto F., Pozzi C., Salamini F., Rohde W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature. 1995 Apr 20;374(6524):727–730. doi: 10.1038/374727a0. [DOI] [PubMed] [Google Scholar]
  22. Nelson T., Dengler N. Leaf Vascular Pattern Formation. Plant Cell. 1997 Jul;9(7):1121–1135. doi: 10.1105/tpc.9.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parnis A., Cohen O., Gutfinger T., Hareven D., Zamir D., Lifschitz E. The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene. Plant Cell. 1997 Dec;9(12):2143–2158. doi: 10.1105/tpc.9.12.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poethig R. S. Leaf morphogenesis in flowering plants. Plant Cell. 1997 Jul;9(7):1077–1087. doi: 10.1105/tpc.9.7.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sato Y., Sentoku N., Miura Y., Hirochika H., Kitano H., Matsuoka M. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J. 1999 Feb 15;18(4):992–1002. doi: 10.1093/emboj/18.4.992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scanlon M. J., Schneeberger R. G., Freeling M. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development. 1996 Jun;122(6):1683–1691. doi: 10.1242/dev.122.6.1683. [DOI] [PubMed] [Google Scholar]
  27. Schmidt R. J., Veit B., Mandel M. A., Mena M., Hake S., Yanofsky M. F. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell. 1993 Jul;5(7):729–737. doi: 10.1105/tpc.5.7.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schneeberger R. G., Becraft P. W., Hake S., Freeling M. Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 1995 Sep 15;9(18):2292–2304. doi: 10.1101/gad.9.18.2292. [DOI] [PubMed] [Google Scholar]
  29. Schneeberger R., Tsiantis M., Freeling M., Langdale J. A. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development. 1998 Aug;125(15):2857–2865. doi: 10.1242/dev.125.15.2857. [DOI] [PubMed] [Google Scholar]
  30. Sinha N. R., Williams R. E., Hake S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 1993 May;7(5):787–795. doi: 10.1101/gad.7.5.787. [DOI] [PubMed] [Google Scholar]
  31. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  32. Smith L. G., Hake S., Sylvester A. W. The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development. 1996 Feb;122(2):481–489. doi: 10.1242/dev.122.2.481. [DOI] [PubMed] [Google Scholar]
  33. Sylvester A. W., Cande W. Z., Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development. Development. 1990 Nov;110(3):985–1000. doi: 10.1242/dev.110.3.985. [DOI] [PubMed] [Google Scholar]
  34. Sylvester A. W., Smith L., Freeling M. Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol. 1996;12:257–304. doi: 10.1146/annurev.cellbio.12.1.257. [DOI] [PubMed] [Google Scholar]
  35. Tsuge T., Tsukaya H., Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development. 1996 May;122(5):1589–1600. doi: 10.1242/dev.122.5.1589. [DOI] [PubMed] [Google Scholar]
  36. Veit B., Schmidt R. J., Hake S., Yanofsky M. F. Maize Floral Development: New Genes and Old Mutants. Plant Cell. 1993 Oct;5(10):1205–1215. doi: 10.1105/tpc.5.10.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]
  38. Williams-Carrier R. E., Lie Y. S., Hake S., Lemaux P. G. Ectopic expression of the maize kn1 gene phenocopies the Hooded mutant of barley. Development. 1997 Oct;124(19):3737–3745. doi: 10.1242/dev.124.19.3737. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES