Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jul;11(7):1293–1306. doi: 10.1105/tpc.11.7.1293

Environmental signals controlling sexual development of the corn Smut fungus Ustilago maydis through the transcriptional regulator Prf1.

H A Hartmann 1, J Krüger 1, F Lottspeich 1, R Kahmann 1
PMCID: PMC144278  PMID: 10402430

Abstract

Environmental signals induce and coordinate discrete morphological transitions during sexual development of Ustilago maydis. In this fungus, mating of two compatible haploid sporidia is a prerequisite for plant infection. Cell fusion is governed by the action of pheromones and receptors, whereas the subsequent pathogenicity program is controlled by the combinatorial interaction of homeodomain proteins. The U. maydis pheromone response factor (Prf1) is a central regulator of both processes. We have analyzed the regulation of the prf1 gene and demonstrate that pheromone and cAMP signaling regulate prf1 post-transcriptionally. Transcriptional activation of prf1 was observed in the presence of carbon sources, such as glucose and fructose, allowing us to define the cis-acting element in the prf1 promoter that mediates these effects. The same element provides for negative control of prf1 gene transcription at high cAMP levels. A protein that specifically binds to this element was purified and analyzed for its role in prf1 gene regulation. On the basis of these results, we present a model in which prf1 integrates different environmental signals to control development in U. maydis.

Full Text

The Full Text of this article is available as a PDF (531.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Hamer J. E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell. 1998 Aug;10(8):1361–1374. doi: 10.1105/tpc.10.8.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. An Z., Mei B., Yuan W. M., Leong S. A. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J. 1997 Apr 1;16(7):1742–1750. doi: 10.1093/emboj/16.7.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banuett F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet. 1995;29:179–208. doi: 10.1146/annurev.ge.29.120195.001143. [DOI] [PubMed] [Google Scholar]
  4. Banuett F., Herskowitz I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5878–5882. doi: 10.1073/pnas.86.15.5878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Basse C. W., Lottspeich F., Steglich W., Kahmann R. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur J Biochem. 1996 Dec 15;242(3):648–656. doi: 10.1111/j.1432-1033.1996.0648r.x. [DOI] [PubMed] [Google Scholar]
  6. Bölker M., Böhnert H. U., Braun K. H., Görl J., Kahmann R. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet. 1995 Sep 20;248(5):547–552. doi: 10.1007/BF02423450. [DOI] [PubMed] [Google Scholar]
  7. Bölker M., Urban M., Kahmann R. The a mating type locus of U. maydis specifies cell signaling components. Cell. 1992 Feb 7;68(3):441–450. doi: 10.1016/0092-8674(92)90182-c. [DOI] [PubMed] [Google Scholar]
  8. Carlson M. Regulation of sugar utilization in Saccharomyces species. J Bacteriol. 1987 Nov;169(11):4873–4877. doi: 10.1128/jb.169.11.4873-4877.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Day P. R., Anagnostakis S. L. Corn smut dikaryon in culture. Nat New Biol. 1971 May 5;231(18):19–20. doi: 10.1038/newbio231019a0. [DOI] [PubMed] [Google Scholar]
  10. Dürrenberger F., Wong K., Kronstad J. W. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5684–5689. doi: 10.1073/pnas.95.10.5684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gold S. E., Brogdon S. M., Mayorga M. E., Kronstad J. W. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell. 1997 Sep;9(9):1585–1594. doi: 10.1105/tpc.9.9.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold S., Duncan G., Barrett K., Kronstad J. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 1994 Dec 1;8(23):2805–2816. doi: 10.1101/gad.8.23.2805. [DOI] [PubMed] [Google Scholar]
  13. Hartmann H. A., Kahmann R., Bölker M. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 1996 Apr 1;15(7):1632–1641. [PMC free article] [PubMed] [Google Scholar]
  14. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  15. Johnston M. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 1999 Jan;15(1):29–33. doi: 10.1016/s0168-9525(98)01637-0. [DOI] [PubMed] [Google Scholar]
  16. Keon J. P., White G. A., Hargreaves J. A. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet. 1991 Jun;19(6):475–481. doi: 10.1007/BF00312739. [DOI] [PubMed] [Google Scholar]
  17. Klein C. J., Olsson L., Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology. 1998 Jan;144(Pt 1):13–24. doi: 10.1099/00221287-144-1-13. [DOI] [PubMed] [Google Scholar]
  18. Krüger J., Loubradou G., Regenfelder E., Hartmann A., Kahmann R. Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol Gen Genet. 1998 Nov;260(2-3):193–198. doi: 10.1007/s004380050885. [DOI] [PubMed] [Google Scholar]
  19. Kämper J., Reichmann M., Romeis T., Bölker M., Kahmann R. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell. 1995 Apr 7;81(1):73–83. doi: 10.1016/0092-8674(95)90372-0. [DOI] [PubMed] [Google Scholar]
  20. Madi L., McBride S. A., Bailey L. A., Ebbole D. J. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics. 1997 Jun;146(2):499–508. doi: 10.1093/genetics/146.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nossal G. J. The molecular and cellular basis of affinity maturation in the antibody response. Cell. 1992 Jan 10;68(1):1–2. doi: 10.1016/0092-8674(92)90198-l. [DOI] [PubMed] [Google Scholar]
  22. Oehlen B., Cross F. R. Signal transduction in the budding yeast Saccharomyces cerevisiae. Curr Opin Cell Biol. 1994 Dec;6(6):836–841. doi: 10.1016/0955-0674(94)90053-1. [DOI] [PubMed] [Google Scholar]
  23. Orth A. B., Rzhetskaya M., Pell E. J., Tien M. A serine (threonine) protein kinase confers fungicide resistance in the phytopathogenic fungus Ustilago maydis. Appl Environ Microbiol. 1995 Jun;61(6):2341–2345. doi: 10.1128/aem.61.6.2341-2345.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ozcan S., Dover J., Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 1998 May 1;17(9):2566–2573. doi: 10.1093/emboj/17.9.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428–12432. doi: 10.1073/pnas.93.22.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pi H., Chien C. T., Fields S. Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p. Mol Cell Biol. 1997 Nov;17(11):6410–6418. doi: 10.1128/mcb.17.11.6410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Regenfelder E., Spellig T., Hartmann A., Lauenstein S., Bölker M., Kahmann R. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 1997 Apr 15;16(8):1934–1942. doi: 10.1093/emboj/16.8.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schauwecker F., Wanner G., Kahmann R. Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biol Chem Hoppe Seyler. 1995 Oct;376(10):617–625. doi: 10.1515/bchm3.1995.376.10.617. [DOI] [PubMed] [Google Scholar]
  29. Schmitt M. E., Brown T. A., Trumpower B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. doi: 10.1093/nar/18.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schulz B., Banuett F., Dahl M., Schlesinger R., Schäfer W., Martin T., Herskowitz I., Kahmann R. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 1990 Jan 26;60(2):295–306. doi: 10.1016/0092-8674(90)90744-y. [DOI] [PubMed] [Google Scholar]
  31. Sheen J., Hwang S., Niwa Y., Kobayashi H., Galbraith D. W. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 1995 Nov;8(5):777–784. doi: 10.1046/j.1365-313x.1995.08050777.x. [DOI] [PubMed] [Google Scholar]
  32. Song D., Dolan J. W., Yuan Y. L., Fields S. Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes Dev. 1991 May;5(5):741–750. doi: 10.1101/gad.5.5.741. [DOI] [PubMed] [Google Scholar]
  33. Spellig T., Bottin A., Kahmann R. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet. 1996 Oct 16;252(5):503–509. doi: 10.1007/BF02172396. [DOI] [PubMed] [Google Scholar]
  34. Spellig T., Bölker M., Lottspeich F., Frank R. W., Kahmann R. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 1994 Apr 1;13(7):1620–1627. doi: 10.1002/j.1460-2075.1994.tb06425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taylor S. S., Buechler J. A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990;59:971–1005. doi: 10.1146/annurev.bi.59.070190.004543. [DOI] [PubMed] [Google Scholar]
  36. Thevelein J. M. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. doi: 10.1002/yea.320101308. [DOI] [PubMed] [Google Scholar]
  37. Tsukuda T., Carleton S., Fotheringham S., Holloman W. K. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol Cell Biol. 1988 Sep;8(9):3703–3709. doi: 10.1128/mcb.8.9.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Urban M., Kahmann R., Bölker M. Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet. 1996 Apr 24;251(1):31–37. doi: 10.1007/BF02174341. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES