Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Sep;11(9):1665–1674. doi: 10.1105/tpc.11.9.1665

The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus.

W Zhu 1, B Yang 1, N Wills 1, L B Johnson 1, F F White 1
PMCID: PMC144317  PMID: 10488234

Abstract

The avirulence gene avrXa10 of Xanthomonas oryzae pv oryzae directs the elicitation of resistance in a gene-for-gene manner in rice lines carrying the resistance gene Xa10. We have localized a transcriptional activator domain in the C terminus of AvrXa10 by using amino acid replacement mutagenesis. One mutant, with replacements at three hydrophobic amino acid residues in the C-terminal domain, was defective for transcriptional activation in yeast and avirulence activity in rice. The activation domain from the herpes virus protein VP16 restored the ability of the bacteria expressing the hybrid protein to elicit a resistance reaction. Elicitation was specific for Xa10, and the reaction had the hallmarks of the response to AvrXa10. The results indicate that a domain with the properties of a transcriptional activator plays a critical role in AvrXa10 function. The results also indicate that the protein has the potential to interact with the plant transcriptional program, although a role for the domain in the stability or conformation of the protein in the plant cannot be excluded. In a broader sense, the transcriptional activation domain of avrXa10 may represent a prokaryotic version of the acidic transcriptional activation domain, which heretofore has been found exclusively in eukaryotes.

Full Text

The Full Text of this article is available as a PDF (248.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfano J. R., Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol. 1997 Sep;179(18):5655–5662. doi: 10.1128/jb.179.18.5655-5662.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ansari A. Z., Reece R. J., Ptashne M. A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13543–13548. doi: 10.1073/pnas.95.23.13543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonas U., Conrads-Strauch J., Balbo I. Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet. 1993 Apr;238(1-2):261–269. doi: 10.1007/BF00279555. [DOI] [PubMed] [Google Scholar]
  4. Bonas U., Stall R. E., Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet. 1989 Jul;218(1):127–136. doi: 10.1007/BF00330575. [DOI] [PubMed] [Google Scholar]
  5. Bonas U., Van den Ackervaken G. Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? Plant J. 1997 Jul;12(1):1–7. doi: 10.1046/j.1365-313x.1997.12010001.x. [DOI] [PubMed] [Google Scholar]
  6. Canteros B., Minsavage G., Bonas U., Pring D., Stall R. A gene from Xanthomonas campestris pv. vesicatoria that determines avirulence in tomato is related to avrBs3. Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):628–632. doi: 10.1094/mpmi-4-628. [DOI] [PubMed] [Google Scholar]
  7. Chittoor J. M., Leach J. E., White F. F. Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 1997 Sep;10(7):861–871. doi: 10.1094/MPMI.1997.10.7.861. [DOI] [PubMed] [Google Scholar]
  8. Christensen A. H., Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996 May;5(3):213–218. doi: 10.1007/BF01969712. [DOI] [PubMed] [Google Scholar]
  9. De Feyter R., Yang Y., Gabriel D. W. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact. 1993 Mar-Apr;6(2):225–237. doi: 10.1094/mpmi-6-225. [DOI] [PubMed] [Google Scholar]
  10. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  11. Estruch J. J., Crossland L., Goff S. A. Plant activating sequences: positively charged peptides are functional as transcriptional activation domains. Nucleic Acids Res. 1994 Sep 25;22(19):3983–3989. doi: 10.1093/nar/22.19.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garnier J., Gibrat J. F., Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–553. doi: 10.1016/s0076-6879(96)66034-0. [DOI] [PubMed] [Google Scholar]
  13. Gopalan S., Bauer D. W., Alfano J. R., Loniello A. O., He S. Y., Collmer A. Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell. 1996 Jul;8(7):1095–1105. doi: 10.1105/tpc.8.7.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hopkins C. M., White F. F., Choi S. H., Guo A., Leach J. E. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):451–459. doi: 10.1094/mpmi-5-451. [DOI] [PubMed] [Google Scholar]
  15. Keen N. T. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. doi: 10.1146/annurev.ge.24.120190.002311. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  18. Leister R. T., Ausubel F. M., Katagiri F. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15497–15502. doi: 10.1073/pnas.93.26.15497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris S. W., Vernooij B., Titatarn S., Starrett M., Thomas S., Wiltse C. C., Frederiksen R. A., Bhandhufalck A., Hulbert S., Uknes S. Induced resistance responses in maize. Mol Plant Microbe Interact. 1998 Jul;11(7):643–658. doi: 10.1094/MPMI.1998.11.7.643. [DOI] [PubMed] [Google Scholar]
  20. Ptashne M., Gann A. Transcriptional activation by recruitment. Nature. 1997 Apr 10;386(6625):569–577. doi: 10.1038/386569a0. [DOI] [PubMed] [Google Scholar]
  21. Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 1996 Jul 12;86(1):123–133. doi: 10.1016/s0092-8674(00)80083-5. [DOI] [PubMed] [Google Scholar]
  22. Schardl C. L., Byrd A. D., Benzion G., Altschuler M. A., Hildebrand D. F., Hunt A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene. 1987;61(1):1–11. doi: 10.1016/0378-1119(87)90359-3. [DOI] [PubMed] [Google Scholar]
  23. Scharf S. J., Horn G. T., Erlich H. A. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science. 1986 Sep 5;233(4768):1076–1078. doi: 10.1126/science.3461561. [DOI] [PubMed] [Google Scholar]
  24. Scheel D. Resistance response physiology and signal transduction. Curr Opin Plant Biol. 1998 Aug;1(4):305–310. doi: 10.1016/1369-5266(88)80051-7. [DOI] [PubMed] [Google Scholar]
  25. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  26. Swarup S., Yang Y., Kingsley M. T., Gabriel D. W. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact. 1992 May-Jun;5(3):204–213. doi: 10.1094/mpmi-5-204. [DOI] [PubMed] [Google Scholar]
  27. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
  28. Uesugi M., Nyanguile O., Lu H., Levine A. J., Verdine G. L. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science. 1997 Aug 29;277(5330):1310–1313. doi: 10.1126/science.277.5330.1310. [DOI] [PubMed] [Google Scholar]
  29. Van den Ackerveken G., Marois E., Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell. 1996 Dec 27;87(7):1307–1316. doi: 10.1016/s0092-8674(00)81825-5. [DOI] [PubMed] [Google Scholar]
  30. Yang Y., Gabriel D. W. Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J Bacteriol. 1995 Sep;177(17):4963–4968. doi: 10.1128/jb.177.17.4963-4968.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang Y., Gabriel D. W. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):627–631. doi: 10.1094/mpmi-8-0627. [DOI] [PubMed] [Google Scholar]
  32. Young S. A., White F. F., Hopkins C. M., Leach J. E. AVRXa10 protein is in the cytoplasm of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):799–804. doi: 10.1094/mpmi-7-0799. [DOI] [PubMed] [Google Scholar]
  33. Zhou J., Loh Y. T., Bressan R. A., Martin G. B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995 Dec 15;83(6):925–935. doi: 10.1016/0092-8674(95)90208-2. [DOI] [PubMed] [Google Scholar]
  34. Zhou J., Tang X., Martin G. B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997 Jun 2;16(11):3207–3218. doi: 10.1093/emboj/16.11.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhu W., Yang B., Chittoor J. M., Johnson L. B., White F. F. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact. 1998 Aug;11(8):824–832. doi: 10.1094/MPMI.1998.11.8.824. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES