Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 May;10(5):791–800. doi: 10.1105/tpc.10.5.791

Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter

MA Blazquez 1, R Green 1, O Nilsson 1, MR Sussman 1, D Weigel 1
PMCID: PMC144373  PMID: 9596637

Abstract

The gibberellin class of plant hormones has been implicated in the control of flowering in several species. In Arabidopsis, severe reduction of endogenous gibberellins delays flowering in long days and prevents flowering in short days. We have investigated how the differential effects of gibberellins on flowering correlate with expression of LEAFY, a floral meristem identity gene. We have found that the failure of gibberellin-deficient ga1-3 mutants to flower in short days was paralleled by the absence of LEAFY promoter induction. A causal connection between these two events was confirmed by the ability of a constitutively expressed LEAFY transgene to restore flowering to ga1-3 mutants in short days. In contrast to short days, impairment of gibberellin biosynthesis caused merely a reduction of LEAFY expression when plants were grown in long days or with sucrose in the dark. As a first step toward identifying other small molecules that might regulate flowering, we have developed a rapid in vitro assay for LEAFY promoter activity.

Full Text

The Full Text of this article is available as a PDF (302.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blázquez M. A., Soowal L. N., Lee I., Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development. 1997 Oct;124(19):3835–3844. doi: 10.1242/dev.124.19.3835. [DOI] [PubMed] [Google Scholar]
  3. Chien J. C., Sussex I. M. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Aug;111(4):1321–1328. doi: 10.1104/pp.111.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gubler F., Kalla R., Roberts J. K., Jacobsen J. V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995 Nov;7(11):1879–1891. doi: 10.1105/tpc.7.11.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hempel F. D., Weigel D., Mandel M. A., Ditta G., Zambryski P. C., Feldman L. J., Yanofsky M. F. Floral determination and expression of floral regulatory genes in Arabidopsis. Development. 1997 Oct;124(19):3845–3853. doi: 10.1242/dev.124.19.3845. [DOI] [PubMed] [Google Scholar]
  6. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  8. Metz A. M., Timmer R. T., Browning K. S. Sequences for two cDNAs encoding Arabidopsis thaliana eukaryotic protein synthesis initiation factor 4A. Gene. 1992 Oct 21;120(2):313–314. doi: 10.1016/0378-1119(92)90112-3. [DOI] [PubMed] [Google Scholar]
  9. Okamuro J. K., Szeto W., Lotys-Prass C., Jofuku K. D. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell. 1997 Jan;9(1):37–47. doi: 10.1105/tpc.9.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Okamuro J. K., den Boer B. G., Lotys-Prass C., Szeto W., Jofuku K. D. Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13831–13836. doi: 10.1073/pnas.93.24.13831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995 Mar 24;80(6):847–857. doi: 10.1016/0092-8674(95)90288-0. [DOI] [PubMed] [Google Scholar]
  12. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silverstone A. L., Mak P. Y., Martínez E. C., Sun T. P. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics. 1997 Jul;146(3):1087–1099. doi: 10.1093/genetics/146.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simon R., Igeño M. I., Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996 Nov 7;384(6604):59–62. doi: 10.1038/384059a0. [DOI] [PubMed] [Google Scholar]
  16. Sun T. P., Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994 Oct;6(10):1509–1518. doi: 10.1105/tpc.6.10.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Telfer A., Bollman K. M., Poethig R. S. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997 Feb;124(3):645–654. doi: 10.1242/dev.124.3.645. [DOI] [PubMed] [Google Scholar]
  18. Thoma S., Sullivan M. L., Vierstra R. D. Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis thaliana are differentially expressed. Plant Mol Biol. 1996 Jun;31(3):493–505. doi: 10.1007/BF00042223. [DOI] [PubMed] [Google Scholar]
  19. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995 Oct 12;377(6549):495–500. doi: 10.1038/377495a0. [DOI] [PubMed] [Google Scholar]
  20. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. doi: 10.1146/annurev.ge.29.120195.000315. [DOI] [PubMed] [Google Scholar]
  21. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Xu Y. L., Gage D. A., Zeevaart J. A. Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol. 1997 Aug;114(4):1471–1476. doi: 10.1104/pp.114.4.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES