Skip to main content
Immunology logoLink to Immunology
. 1986 Dec;59(4):515–520.

Inhibition of human monocyte respiratory burst, degranulation, phospholipid methylation and bactericidal activity by pneumolysin.

M Nandoskar, A Ferrante, E J Bates, N Hurst, J C Paton
PMCID: PMC1453333  PMID: 3804376

Abstract

The interaction between the pneumococcal toxin pneumolysin and human monocytes was examined. At non-cytotoxic concentrations (0.5-2.5 HU/10(6) cells) pneumolysin depressed the oxygen-dependent respiratory burst in monocytes, induced by opsonized zymosan or phorbol myristate acetate (PMA). This included depressed hexose-monophosphate shunt activity and hydrogen peroxide production. The toxin also depressed the ability of monocytes to degranulate (measured by release of lysozyme) in response to the above stimuli. Phospholipid transmethylation was also markedly decreased by pretreating monocytes with pneumolysin. These effects on monocyte functions were accompanied by a decreased ability of pneumolysin-treated monocytes to kill Streptococcus pneumoniae, the organism that produces the toxin. Cholesterol, which inhibits the haemolytic activity of the toxin, was shown to abrogate the effects of pneumolysin on monocytes.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates E. J., Johnson C. C., Lowther D. A. Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochim Biophys Acta. 1985 Feb 15;838(2):221–228. doi: 10.1016/0304-4165(85)90082-0. [DOI] [PubMed] [Google Scholar]
  2. Bonvini E., Bougnoux P., Stevenson H. C., Miller P., Hoffman T. Activation of the oxidative burst in human monocytes is associated with inhibition of methionine-dependent methylation of neutral lipids and phospholipids. J Clin Invest. 1984 Jun;73(6):1629–1637. doi: 10.1172/JCI111369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castaño J. G., Alemany S., Nieto A., Mato J. M. Activation of phospholipid methyltransferase by glucagon in rat hepatocytes. J Biol Chem. 1980 Oct 10;255(19):9041–9043. [PubMed] [Google Scholar]
  4. Cockcroft S., Barrowman M. M., Gomperts B. D. Breakdown and synthesis of polyphosphoinositides in fMetLeuPhe-stimulated neutrophils. FEBS Lett. 1985 Feb 25;181(2):259–263. doi: 10.1016/0014-5793(85)80271-4. [DOI] [PubMed] [Google Scholar]
  5. Ferrante A., Rencis V. O. Enhancement of base hexose-monophosphate shunt activity of human polymorphonuclear leucocytes by human beta-interferon. Immunol Lett. 1984;8(4):215–217. doi: 10.1016/0165-2478(84)90081-6. [DOI] [PubMed] [Google Scholar]
  6. Ferrante A., Rowan-Kelly B., Paton J. C. Inhibition of in vitro human lymphocyte response by the pneumococcal toxin pneumolysin. Infect Immun. 1984 Nov;46(2):585–589. doi: 10.1128/iai.46.2.585-589.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
  8. Johnson M. K., Boese-Marrazzo D., Pierce W. A., Jr Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun. 1981 Oct;34(1):171–176. doi: 10.1128/iai.34.1.171-176.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson M. K., Geoffroy C., Alouf J. E. Binding of cholesterol by sulfhydryl-activated cytolysins. Infect Immun. 1980 Jan;27(1):97–101. doi: 10.1128/iai.27.1.97-101.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kelly K. L., Wong E. H., Jarett L. Adrenocorticotropic stimulation and insulin inhibition of adipocyte phospholipid methylation. J Biol Chem. 1985 Mar 25;260(6):3640–3644. [PubMed] [Google Scholar]
  11. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  12. Paton J. C., Ferrante A. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect Immun. 1983 Sep;41(3):1212–1216. doi: 10.1128/iai.41.3.1212-1216.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paton J. C., Lock R. A., Hansman D. J. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun. 1983 May;40(2):548–552. doi: 10.1128/iai.40.2.548-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paton J. C., Rowan-Kelly B., Ferrante A. Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun. 1984 Mar;43(3):1085–1087. doi: 10.1128/iai.43.3.1085-1087.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. West B. C., Rosenthal A. S., Gelb N. A., Kimball H. R. Separation and characterization of human neutrophil granules. Am J Pathol. 1974 Oct;77(1):41–66. [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES