Skip to main content
Genetics logoLink to Genetics
. 1998 Mar;148(3):1215–1224. doi: 10.1093/genetics/148.3.1215

Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship.

S Saebøe-Larssen 1, M Lyamouri 1, J Merriam 1, M P Oksvold 1, A Lambertsson 1
PMCID: PMC1460017  PMID: 9539436

Abstract

Minutes comprise > 50 phenotypically similar mutations scattered throughout the genome of Drosophila, many of which are identified as mutations in ribosomal protein (rp) genes. Common traits of the Minute phenotype are short and thin bristles, slow development, and recessive lethality. By mobilizing a P element inserted in the 5' UTR of M(3)95A, the gene encoding ribosomal protein S3 (RPS3), we have generated two homozygous viable heteroalleles that are partial revertants with respect to the Minute phenotype. Molecular characterization revealed both alleles to be imprecise excisions, leaving 40 and 110 bp, respectively, at the P-element insertion site. The weaker allele (40 bp insert) is associated with a approximately 15% decrease in RPS3 mRNA abundance and displays a moderate Minute phenotype. In the stronger allele (110 bp insert) RPS3 mRNA levels are reduced by approximately 60%, resulting in an extreme Minute phenotype that includes many morphological abnormalities as well as sterility in both males and females due to disruption of early gametogenesis. The results show that there is a correlation between reduced RPS3 mRNA levels and the severity of the Minute phenotype, in which faulty differentiation of somatic tissues and arrest of gametogenesis represent the extreme case. That heteroalleles in M(3)95A can mimic the phenotypic variations that exist between different Minute/rp-gene mutations strongly suggests that all phenotypes primarily are caused by reductions in maximum protein synthesis rates, but that the sensitivity for reduced levels of the individual rp-gene products is different.

Full Text

The Full Text of this article is available as a PDF (696.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson S., Saebøe-Larssen S., Lambertsson A., Merriam J., Jacobs-Lorena M. A Drosophila third chromosome Minute locus encodes a ribosomal protein. Genetics. 1994 Jun;137(2):513–520. doi: 10.1093/genetics/137.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atchison M. L., Meyuhas O., Perry R. P. Localization of transcriptional regulatory elements and nuclear factor binding sites in mouse ribosomal protein gene rpL32. Mol Cell Biol. 1989 May;9(5):2067–2074. doi: 10.1128/mcb.9.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown C. M., Stockwell P. A., Dalphin M. E., Tate W. P. The translational termination signal database (TransTerm) now also includes initiation contexts. Nucleic Acids Res. 1994 Sep;22(17):3620–3624. doi: 10.1093/nar/22.17.3620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown S. J., Rhoads D. D., Stewart M. J., Van Slyke B., Chen I. T., Johnson T. K., Denell R. E., Roufa D. J. Ribosomal protein S14 is encoded by a pair of highly conserved, adjacent genes on the X chromosome of Drosophila melanogaster. Mol Cell Biol. 1988 Oct;8(10):4314–4321. doi: 10.1128/mcb.8.10.4314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cramton S. E., Laski F. A. string of pearls encodes Drosophila ribosomal protein S2, has Minute-like characteristics, and is required during oogenesis. Genetics. 1994 Aug;137(4):1039–1048. doi: 10.1093/genetics/137.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorer D. R., Anane-Firempong A., Christensen A. C. Ribosomal protein S14 is not responsible for the Minute phenotype associated with the M(1)7C locus in Drosophila melanogaster. Mol Gen Genet. 1991 Nov;230(1-2):8–11. doi: 10.1007/BF00290642. [DOI] [PubMed] [Google Scholar]
  7. Espelund M., Stacy R. A., Jakobsen K. S. A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res. 1990 Oct 25;18(20):6157–6158. doi: 10.1093/nar/18.20.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garcia-Bellido A., Merriam J. R. Clonal parameters of tergite development in Drosophila. Dev Biol. 1971 Oct;26(2):264–276. doi: 10.1016/0012-1606(71)90126-6. [DOI] [PubMed] [Google Scholar]
  9. Hariharan N., Kelley D. E., Perry R. P. Equipotent mouse ribosomal protein promoters have a similar architecture that includes internal sequence elements. Genes Dev. 1989 Nov;3(11):1789–1800. doi: 10.1101/gad.3.11.1789. [DOI] [PubMed] [Google Scholar]
  10. Hart K., Klein T., Wilcox M. A Minute encoding a ribosomal protein enhances wing morphogenesis mutants. Mech Dev. 1993 Oct;43(2-3):101–110. doi: 10.1016/0925-4773(93)90028-v. [DOI] [PubMed] [Google Scholar]
  11. Jakobsen K. S., Breivold E., Hornes E. Purification of mRNA directly from crude plant tissues in 15 minutes using magnetic oligo dT microspheres. Nucleic Acids Res. 1990 Jun 25;18(12):3669–3669. doi: 10.1093/nar/18.12.3669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. King R. C., Aggarwal S. K., Aggarwal U. The development of the female Drosophila reproductive system. J Morphol. 1968 Feb;124(2):143–166. doi: 10.1002/jmor.1051240203. [DOI] [PubMed] [Google Scholar]
  13. Kongsuwan K., Yu Q., Vincent A., Frisardi M. C., Rosbash M., Lengyel J. A., Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature. 1985 Oct 10;317(6037):555–558. doi: 10.1038/317555a0. [DOI] [PubMed] [Google Scholar]
  14. McKim K. S., Dahmus J. B., Hawley R. S. Cloning of the Drosophila melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of interval 15E. Genetics. 1996 Sep;144(1):215–228. doi: 10.1093/genetics/144.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Melnick M. B., Noll E., Perrimon N. The Drosophila stubarista phenotype is associated with a dosage effect of the putative ribosome-associated protein D-p40 on spineless. Genetics. 1993 Oct;135(2):553–564. doi: 10.1093/genetics/135.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mitchell H. K., Lipps L. S., Tracy U. M. Transcriptional changes in pupal hypoderm in Drosophia melanogaster. Biochem Genet. 1977 Jun;15(5-6):575–587. doi: 10.1007/BF00520199. [DOI] [PubMed] [Google Scholar]
  17. Pelletier J., Sonenberg N. Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell. 1985 Mar;40(3):515–526. doi: 10.1016/0092-8674(85)90200-4. [DOI] [PubMed] [Google Scholar]
  18. Procunier J. D., Dunn R. J. Genetic and molecular organization of the 5S locus and mutants in D. melanogaster. Cell. 1978 Nov;15(3):1087–1093. doi: 10.1016/0092-8674(78)90292-1. [DOI] [PubMed] [Google Scholar]
  19. Saebøe-Larssen S., Lambertsson A. A novel Drosophila Minute locus encodes ribosomal protein S13. Genetics. 1996 Jun;143(2):877–885. doi: 10.1093/genetics/143.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saebøe-Larssen S., Urbanczyk Mohebi B., Lambertsson A. The Drosophila ribosomal protein L14-encoding gene, identified by a novel Minute mutation in a dense cluster of previously undescribed genes in cytogenetic region 66D. Mol Gen Genet. 1997 Jun;255(2):141–151. doi: 10.1007/s004380050482. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmidt A., Hollmann M., Schäfer U. A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. Mol Gen Genet. 1996 Jun 12;251(3):381–387. doi: 10.1007/BF02172530. [DOI] [PubMed] [Google Scholar]
  23. Sinclair D. A., Suzuki D. T., Grigliatti T. A. Genetic and developmental analysis of a temperature-sensitive minute mutation of Drosophila melanogaster. Genetics. 1981 Mar-Apr;97(3-4):581–606. doi: 10.1093/genetics/97.3-4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sonnenblick B. P. Germ Cell Movements and Sex Differentiation of the Gonads in the Drosophila Embryo. Proc Natl Acad Sci U S A. 1941 Oct 15;27(10):484–489. doi: 10.1073/pnas.27.10.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watson K. L., Konrad K. D., Woods D. F., Bryant P. J. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11302–11306. doi: 10.1073/pnas.89.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES