Skip to main content
Genetics logoLink to Genetics
. 1998 Mar;148(3):1257–1268. doi: 10.1093/genetics/148.3.1257

Biased short tract repair of palindromic loop mismatches in mammalian cells.

D G Taghian 1, H Hough 1, J A Nickoloff 1
PMCID: PMC1460022  PMID: 9539440

Abstract

Mismatch repair of palindromic loops in the presence or absence of single-base mismatches was investigated in wild-type and mismatch-binding defective mutant Chinese hamster ovary cells. Recombination intermediates with a maximum heteroduplex DNA (hDNA) region of 697 bp contained a centrally located, phenotypically silent 12-base palindromic loop mismatch, and/or five single-base mismatches. In wild-type cells, both loops and single-base mismatches were efficiently repaired (80-100%). When no other mismatches were present in hDNA, loops were retained with a 1.6-1.9:1 bias. However, this bias was eliminated when single-base mismatches were present, perhaps because single-base mismatches signal nick-directed repair. In the multiple marker crosses, most repair tracts were long and continuous, with preferential loss of markers in cis to proximal nicks, consistent with nicks directing most repair in this situation. However, approximately 25% of repair tracts were discontinuous as a result of loop-specific repair, or from segregation or short tract repair of single-base mismatches. In mutant cells, single-base mismatches were repaired less frequently, but the loop was still repaired efficiently and with bias toward loop retention, indicating that the defect in these cells does not affect loop-specific repair. Repair tracts in products from mutant cells showed a wide variety of mosaic patterns reflecting short regions of repair and segregation consistent with reduced nick-directed repair. In mutant cells, single-base mismatches were repaired more efficiently in the presence of the loop than in its absence, a likely consequence of corepair initiated at the loop.

Full Text

The Full Text of this article is available as a PDF (216.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
  2. Alani E., Chi N. W., Kolodner R. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 1995 Jan 15;9(2):234–247. doi: 10.1101/gad.9.2.234. [DOI] [PubMed] [Google Scholar]
  3. Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson R. A., Eliason S. L. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol Cell Biol. 1986 Sep;6(9):3246–3252. doi: 10.1128/mcb.6.9.3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aquilina G., Hess P., Branch P., MacGeoch C., Casciano I., Karran P., Bignami M. A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a mutator phenotype. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8905–8909. doi: 10.1073/pnas.91.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aquilina G., Zijno A., Moscufo N., Dogliotti E., Bignami M. Tolerance to methylnitrosourea-induced DNA damage is associated with 6-thioguanine resistance in CHO cells. Carcinogenesis. 1989 Jul;10(7):1219–1223. doi: 10.1093/carcin/10.7.1219. [DOI] [PubMed] [Google Scholar]
  7. Ayares D., Ganea D., Chekuri L., Campbell C. R., Kucherlapati R. Repair of single-stranded DNA nicks, gaps, and loops in mammalian cells. Mol Cell Biol. 1987 May;7(5):1656–1662. doi: 10.1128/mcb.7.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bishop D. K., Kolodner R. D. Repair of heteroduplex plasmid DNA after transformation into Saccharomyces cerevisiae. Mol Cell Biol. 1986 Oct;6(10):3401–3409. doi: 10.1128/mcb.6.10.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bollag R. J., Elwood D. R., Tobin E. D., Godwin A. R., Liskay R. M. Formation of heteroduplex DNA during mammalian intrachromosomal gene conversion. Mol Cell Biol. 1992 Apr;12(4):1546–1552. doi: 10.1128/mcb.12.4.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boyer J. C., Umar A., Risinger J. I., Lipford J. R., Kane M., Yin S., Barrett J. C., Kolodner R. D., Kunkel T. A. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 1995 Dec 15;55(24):6063–6070. [PubMed] [Google Scholar]
  11. Branch P., Aquilina G., Bignami M., Karran P. Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature. 1993 Apr 15;362(6421):652–654. doi: 10.1038/362652a0. [DOI] [PubMed] [Google Scholar]
  12. Brown T. C., Jiricny J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell. 1988 Aug 26;54(5):705–711. doi: 10.1016/s0092-8674(88)80015-1. [DOI] [PubMed] [Google Scholar]
  13. Carraway M., Marinus M. G. Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli. J Bacteriol. 1993 Jul;175(13):3972–3980. doi: 10.1128/jb.175.13.3972-3980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carroll D., Lehman C. W., Jeong-Yu S., Dohrmann P., Dawson R. J., Trautman J. K. Distribution of exchanges upon homologous recombination of exogenous DNA in Xenopus laevis oocytes. Genetics. 1994 Oct;138(2):445–457. doi: 10.1093/genetics/138.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Deng W. P., Nickoloff J. A. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):400–406. doi: 10.1128/mcb.14.1.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  17. Desautels L., Brouillette S., Wallenburg J., Belmaaza A., Gusew N., Trudel P., Chartrand P. Characterization of nonconservative homologous junctions in mammalian cells. Mol Cell Biol. 1990 Dec;10(12):6613–6618. doi: 10.1128/mcb.10.12.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fang W. H., Modrich P. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J Biol Chem. 1993 Jun 5;268(16):11838–11844. [PubMed] [Google Scholar]
  19. Folger K. R., Thomas K., Capecchi M. R. Efficient correction of mismatched bases in plasmid heteroduplexes injected into cultured mammalian cell nuclei. Mol Cell Biol. 1985 Jan;5(1):70–74. doi: 10.1128/mcb.5.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hare J. T., Taylor J. H. One role for DNA methylation in vertebrate cells is strand discrimination in mismatch repair. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7350–7354. doi: 10.1073/pnas.82.21.7350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henderson G., Simons J. P. Processing of DNA prior to illegitimate recombination in mouse cells. Mol Cell Biol. 1997 Jul;17(7):3779–3785. doi: 10.1128/mcb.17.7.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hess P., Aquilina G., Dogliotti E., Bignami M. Spontaneous mutations at aprt locus in a mammalian cell line defective in mismatch recognition. Somat Cell Mol Genet. 1994 Sep;20(5):409–421. doi: 10.1007/BF02257458. [DOI] [PubMed] [Google Scholar]
  23. Heywood L. A., Burke J. F. Mismatch repair in mammalian cells. Bioessays. 1990 Oct;12(10):473–477. doi: 10.1002/bies.950121004. [DOI] [PubMed] [Google Scholar]
  24. Heywood L. A., Burke J. F. Repair of single nucleotide DNA mismatches transfected into mammalian cells can occur by short-patch excision. Mutat Res. 1990 Jul;236(1):59–66. doi: 10.1016/0921-8777(90)90033-2. [DOI] [PubMed] [Google Scholar]
  25. Holmes J., Jr, Clark S., Modrich P. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5837–5841. doi: 10.1073/pnas.87.15.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang K. N., Symington L. S. A 5'-3' exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Mol Cell Biol. 1993 Jun;13(6):3125–3134. doi: 10.1128/mcb.13.6.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ivanov E. L., Haber J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2245–2251. doi: 10.1128/mcb.15.4.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kat A., Thilly W. G., Fang W. H., Longley M. J., Li G. M., Modrich P. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6424–6428. doi: 10.1073/pnas.90.14.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lehman C. W., Jeong-Yu S., Trautman J. K., Carroll D. Repair of heteroduplex DNA in Xenopus laevis oocytes. Genetics. 1994 Oct;138(2):459–470. doi: 10.1093/genetics/138.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lin F. L., Sperle K. M., Sternberg N. L. Extrachromosomal recombination in mammalian cells as studied with single- and double-stranded DNA substrates. Mol Cell Biol. 1987 Jan;7(1):129–140. doi: 10.1128/mcb.7.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lin F. L., Sperle K., Sternberg N. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol Cell Biol. 1990 Jan;10(1):103–112. doi: 10.1128/mcb.10.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lin F. L., Sperle K., Sternberg N. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol Cell Biol. 1990 Jan;10(1):113–119. doi: 10.1128/mcb.10.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miller E. M., Hough H. L., Cho J. W., Nickoloff J. A. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells. Genetics. 1997 Oct;147(2):743–753. doi: 10.1093/genetics/147.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miret J. J., Parker B. O., Lahua R. S. Recognition of DNA insertion/deletion mismatches by an activity in Saccharomyces cerevisiae. Nucleic Acids Res. 1996 Feb 15;24(4):721–729. doi: 10.1093/nar/24.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
  36. Nag D. K., Petes T. D. Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Genetics. 1991 Nov;129(3):669–673. doi: 10.1093/genetics/129.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nag D. K., White M. A., Petes T. D. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature. 1989 Jul 27;340(6231):318–320. doi: 10.1038/340318a0. [DOI] [PubMed] [Google Scholar]
  38. Nickoloff J. A., Reynolds R. J. Transcription stimulates homologous recombination in mammalian cells. Mol Cell Biol. 1990 Sep;10(9):4837–4845. doi: 10.1128/mcb.10.9.4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nickoloff J. A. Sepharose spin column chromatography. A fast, nontoxic replacement for phenol:chloroform extraction/ethanol precipitation. Mol Biotechnol. 1994 Feb;1(1):105–108. doi: 10.1007/BF02821513. [DOI] [PubMed] [Google Scholar]
  40. Ray F. A., Miller E. M., Nickoloff J. A. Efficient marker rescue and domain replacement without fragment subcloning. Anal Biochem. 1995 Jan 1;224(1):440–443. doi: 10.1006/abio.1995.1066. [DOI] [PubMed] [Google Scholar]
  41. Schär P., Kohli J. Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe. Genetics. 1993 Apr;133(4):825–835. doi: 10.1093/genetics/133.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sohail A., Lieb M., Dar M., Bhagwat A. S. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol. 1990 Aug;172(8):4214–4221. doi: 10.1128/jb.172.8.4214-4221.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  44. Steeg C. M., Ellis J., Bernstein A. Introduction of specific point mutations into RNA polymerase II by gene targeting in mouse embryonic stem cells: evidence for a DNA mismatch repair mechanism. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4680–4684. doi: 10.1073/pnas.87.12.4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sugawara N., Pâques F., Colaiácovo M., Haber J. E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9214–9219. doi: 10.1073/pnas.94.17.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
  47. Taghian D. G., Nickoloff J. A. Electrotransformation of Chinese hamster ovary cells. Methods Mol Biol. 1995;48:115–121. doi: 10.1385/0-89603-304-X:115. [DOI] [PubMed] [Google Scholar]
  48. Varlet I., Radman M., Brooks P. DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7883–7887. doi: 10.1073/pnas.87.20.7883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wake C. T., Vernaleone F., Wilson J. H. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol Cell Biol. 1985 Aug;5(8):2080–2089. doi: 10.1128/mcb.5.8.2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wang Z., Rossman T. G. Large-scale supercoiled plasmid preparation by acidic phenol extraction. Biotechniques. 1994 Mar;16(3):460–463. [PubMed] [Google Scholar]
  51. Weiss U., Wilson J. H. Effects of nicks on repair of single-stranded loops in heteroduplex DNA in mammalian cells. Somat Cell Mol Genet. 1989 Jan;15(1):13–18. doi: 10.1007/BF01534665. [DOI] [PubMed] [Google Scholar]
  52. Weng Y. S., Whelden J., Gunn L., Nickoloff J. A. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events. Curr Genet. 1996 Mar;29(4):335–343. doi: 10.1007/BF02208614. [DOI] [PubMed] [Google Scholar]
  53. Wiebauer K., Jiricny J. In vitro correction of G.T mispairs to G.C pairs in nuclear extracts from human cells. Nature. 1989 May 18;339(6221):234–236. doi: 10.1038/339234a0. [DOI] [PubMed] [Google Scholar]
  54. Wiebauer K., Jiricny J. Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5842–5845. doi: 10.1073/pnas.87.15.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. de Wind N., Dekker M., Berns A., Radman M., te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995 Jul 28;82(2):321–330. doi: 10.1016/0092-8674(95)90319-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES