Skip to main content
Genetics logoLink to Genetics
. 1998 Mar;148(3):1269–1284. doi: 10.1093/genetics/148.3.1269

Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories.

A Di Rienzo 1, P Donnelly 1, C Toomajian 1, B Sisk 1, A Hill 1, M L Petzl-Erler 1, G K Haines 1, D H Barch 1
PMCID: PMC1460025  PMID: 9539441

Abstract

Microsatellites have been widely used to reconstruct human evolution. However, the efficient use of these markers relies on information regarding the process producing the observed variation. Here, we present a novel approach to the locus-by-locus characterization of this process. By analyzing somatic mutations in cancer patients, we estimated the distributions of mutation size for each of 20 loci. The same loci were then typed in three ethnically diverse population samples. The generalized stepwise mutation model was used to test the predicted relationship between population and mutation parameters under two demographic scenarios: constant population size and rapid expansion. The agreement between the observed and expected relationship between population and mutation parameters, even when the latter are estimated in cancer patients, confirms that somatic mutations may be useful for investigating the process underlying population variation. Estimated distributions of mutation size differ substantially amongst loci, and mutations of more than one repeat unit are common. A new statistic, the normalized population variance, is introduced for multilocus estimation of demographic parameters, and for testing demographic scenarios. The observed population variation is not consistent with a constant population size. Time estimates of the putative population expansion are in agreement with those obtained by other methods.

Full Text

The Full Text of this article is available as a PDF (243.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
  2. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  3. Belich M. P., Madrigal J. A., Hildebrand W. H., Zemmour J., Williams R. C., Luz R., Petzl-Erler M. L., Parham P. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature. 1992 May 28;357(6376):326–329. doi: 10.1038/357326a0. [DOI] [PubMed] [Google Scholar]
  4. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  5. Chung M. Y., Ranum L. P., Duvick L. A., Servadio A., Zoghbi H. Y., Orr H. T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993 Nov;5(3):254–258. doi: 10.1038/ng1193-254. [DOI] [PubMed] [Google Scholar]
  6. Deka R., DeCroo S., Jin L., McGarvey S. T., Rothhammer F., Ferrell R. E., Chakraborty R. Population genetic characteristics of the D1S80 locus in seven human populations. Hum Genet. 1994 Sep;94(3):252–258. doi: 10.1007/BF00208279. [DOI] [PubMed] [Google Scholar]
  7. Deka R., Jin L., Shriver M. D., Yu L. M., DeCroo S., Hundrieser J., Bunker C. H., Ferrell R. E., Chakraborty R. Population genetics of dinucleotide (dC-dA)n.(dG-dT)n polymorphisms in world populations. Am J Hum Genet. 1995 Feb;56(2):461–474. [PMC free article] [PubMed] [Google Scholar]
  8. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Rienzo A., Wilson A. C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1597–1601. doi: 10.1073/pnas.88.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  11. Excoffier L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J Mol Evol. 1990 Feb;30(2):125–139. doi: 10.1007/BF02099939. [DOI] [PubMed] [Google Scholar]
  12. Fishel R., Wilson T. MutS homologs in mammalian cells. Curr Opin Genet Dev. 1997 Feb;7(1):105–113. doi: 10.1016/s0959-437x(97)80117-7. [DOI] [PubMed] [Google Scholar]
  13. Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
  14. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hammer M. F. A recent common ancestry for human Y chromosomes. Nature. 1995 Nov 23;378(6555):376–378. doi: 10.1038/378376a0. [DOI] [PubMed] [Google Scholar]
  16. Hasegawa M., Di Rienzo A., Kocher T. D., Wilson A. C. Toward a more accurate time scale for the human mitochondrial DNA tree. J Mol Evol. 1993 Oct;37(4):347–354. doi: 10.1007/BF00178865. [DOI] [PubMed] [Google Scholar]
  17. Honchel R., Halling K. C., Thibodeau S. N. Genomic instability in neoplasia. Semin Cell Biol. 1995 Feb;6(1):45–52. doi: 10.1016/1043-4682(95)90014-4. [DOI] [PubMed] [Google Scholar]
  18. Imbert G., Kretz C., Johnson K., Mandel J. L. Origin of the expansion mutation in myotonic dystrophy. Nat Genet. 1993 May;4(1):72–76. doi: 10.1038/ng0593-72. [DOI] [PubMed] [Google Scholar]
  19. Jorde L. B., Bamshad M. J., Watkins W. S., Zenger R., Fraley A. E., Krakowiak P. A., Carpenter K. D., Soodyall H., Jenkins T., Rogers A. R. Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data. Am J Hum Genet. 1995 Sep;57(3):523–538. doi: 10.1002/ajmg.1320570340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kimmel M., Chakraborty R. Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor Popul Biol. 1996 Dec;50(3):345–367. doi: 10.1006/tpbi.1996.0035. [DOI] [PubMed] [Google Scholar]
  21. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
  22. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  23. Liu B., Nicolaides N. C., Markowitz S., Willson J. K., Parsons R. E., Jen J., Papadopolous N., Peltomäki P., de la Chapelle A., Hamilton S. R. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995 Jan;9(1):48–55. doi: 10.1038/ng0195-48. [DOI] [PubMed] [Google Scholar]
  24. MacDonald M. E., Novelletto A., Lin C., Tagle D., Barnes G., Bates G., Taylor S., Allitto B., Altherr M., Myers R. The Huntington's disease candidate region exhibits many different haplotypes. Nat Genet. 1992 May;1(2):99–103. doi: 10.1038/ng0592-99. [DOI] [PubMed] [Google Scholar]
  25. Marjoram P., Donnelly P. Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution. Genetics. 1994 Feb;136(2):673–683. doi: 10.1093/genetics/136.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Monckton D. G., Neumann R., Guram T., Fretwell N., Tamaki K., MacLeod A., Jeffreys A. J. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet. 1994 Oct;8(2):162–170. doi: 10.1038/ng1094-162. [DOI] [PubMed] [Google Scholar]
  27. Neville C. E., Mahadevan M. S., Barceló J. M., Korneluk R. G. High resolution genetic analysis suggests one ancestral predisposing haplotype for the origin of the myotonic dystrophy mutation. Hum Mol Genet. 1994 Jan;3(1):45–51. doi: 10.1093/hmg/3.1.45. [DOI] [PubMed] [Google Scholar]
  28. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  29. Pritchard J. K., Feldman M. W. Statistics for microsatellite variation based on coalescence. Theor Popul Biol. 1996 Dec;50(3):325–344. doi: 10.1006/tpbi.1996.0034. [DOI] [PubMed] [Google Scholar]
  30. Richards R. I., Holman K., Friend K., Kremer E., Hillen D., Staples A., Brown W. T., Goonewardena P., Tarleton J., Schwartz C. Evidence of founder chromosomes in fragile X syndrome. Nat Genet. 1992 Jul;1(4):257–260. doi: 10.1038/ng0792-257. [DOI] [PubMed] [Google Scholar]
  31. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
  32. Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Jain S., Li S. H., Margolis R. L., Ross C. A., Ferguson-Smith M. A. Microsatellite evolution--evidence for directionality and variation in rate between species. Nat Genet. 1995 Jul;10(3):337–343. doi: 10.1038/ng0795-337. [DOI] [PubMed] [Google Scholar]
  33. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sia E. A., Kokoska R. J., Dominska M., Greenwell P., Petes T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol. 1997 May;17(5):2851–2858. doi: 10.1128/mcb.17.5.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tanaka F., Doyu M., Ito Y., Matsumoto M., Mitsuma T., Abe K., Aoki M., Itoyama Y., Fischbeck K. H., Sobue G. Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum Mol Genet. 1996 Sep;5(9):1253–1257. doi: 10.1093/hmg/5.9.1253. [DOI] [PubMed] [Google Scholar]
  38. Tautz D., Schlötterer Simple sequences. Curr Opin Genet Dev. 1994 Dec;4(6):832–837. doi: 10.1016/0959-437x(94)90067-1. [DOI] [PubMed] [Google Scholar]
  39. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  40. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
  42. Weber J. L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990 Aug;7(4):524–530. doi: 10.1016/0888-7543(90)90195-z. [DOI] [PubMed] [Google Scholar]
  43. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  44. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang L., Leeflang E. P., Yu J., Arnheim N. Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nat Genet. 1994 Aug;7(4):531–535. doi: 10.1038/ng0894-531. [DOI] [PubMed] [Google Scholar]
  46. Zhivotovsky L. A., Feldman M. W. Microsatellite variability and genetic distances. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11549–11552. doi: 10.1073/pnas.92.25.11549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. da Costa L. T., Liu B., el-Deiry W., Hamilton S. R., Kinzler K. W., Vogelstein B., Markowitz S., Willson J. K., de la Chapelle A., Downey K. M. Polymerase delta variants in RER colorectal tumours. Nat Genet. 1995 Jan;9(1):10–11. doi: 10.1038/ng0195-10. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES