Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1461–1473. doi: 10.1093/genetics/148.4.1461

A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes.

T P Gary 1, N E Colowick 1, G Mosig 1
PMCID: PMC1460086  PMID: 9560366

Abstract

Bacteriophage T2 alleles are excluded in crosses between T2 and T4 because of genetic isolation between these two virus species. The severity of exclusion varies in different genes, with gene 56, encoding an essential dCT(D)Pase/dUT(D)Pase of these phages, being most strongly affected. To investigate reasons for such strong exclusion, we have (1) sequenced the T2 gene 56 and an adjacent region, (2) compared the sequence with the corresponding T4 DNA, (3) constructed chimeric phages in which T2 and T4 sequences of this region are recombined, and (4) tested complementation, recombination, and exclusion with gene 56 cloned in a plasmid and in the chimeric phages in Escherichia coli CR63, in which growth of wild-type T2 is not restricted by T4. Our results argue against a role of the dCTPase protein in this exclusion and implicate instead DNA sequence differences as major contributors to the apparent species barrier. This sequence divergence exhibits a remarkable pattern: a major heterologous sequence counter-clockwise from gene 56 (and downstream of the gene 56 transcripts) replaces in T2 DNA the T4 gene 69. Gene 56 base sequences bordering this substituted region are significantly different, whereas sequences of the dam genes, adjacent in the clockwise direction, are similar in T2 and in T4. The gene 56 sequence differences can best be explained by multiple compensating frameshifts and base substitutions, which result in T2 and T4 dCTPases whose amino acid sequences and functions remain similar. Based on these findings we propose a model for the evolution of multiple sequence differences concomitant with the substitution of an adjacent gene by foreign DNA: invasion by the single-stranded segments of foreign DNA, nucleated from a short DNA sequence that was complementary by chance, has triggered recombination-dependent replication by "join-copy" and "join-cut-copy" pathways that are known to operate in the T-even phages and are implicated in other organisms as well. This invasion, accompanied by heteroduplex formation between partially similar sequences, and perhaps subsequent partial heteroduplex repair, simultaneously substituted T4 gene 69 for foreign sequences and scrambled the sequence of the dCTPase gene 56. We suggest that similar mechanisms can mobilize DNA segments for horizontal transfer without necessarily requiring transposase or site-specific recombination functions.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bautz F. A., Bautz E. K. Transformation in phage T4: minmal recognition length between donor and recipient DNA. Genetics. 1967 Dec;57(4):887–895. doi: 10.1093/genetics/57.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom L. B., Otto M. R., Eritja R., Reha-Krantz L. J., Goodman M. F., Beechem J. M. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry. 1994 Jun 21;33(24):7576–7586. doi: 10.1021/bi00190a010. [DOI] [PubMed] [Google Scholar]
  5. Brown H. J., Stokes H. W., Hall R. M. The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol. 1996 Aug;178(15):4429–4437. doi: 10.1128/jb.178.15.4429-4437.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown M. D., Ripley L. S., Hall D. H. A proflavin-induced frameshift hotspot in the thymidylate synthase gene of bacteriophage T4. Mutat Res. 1993 Apr;286(2):189–197. doi: 10.1016/0027-5107(93)90183-g. [DOI] [PubMed] [Google Scholar]
  7. Brüssow H., Bruttin A. Characterization of a temperate Streptococcus thermophilus bacteriophage and its genetic relationship with lytic phages. Virology. 1995 Oct 1;212(2):632–640. doi: 10.1006/viro.1995.1521. [DOI] [PubMed] [Google Scholar]
  8. DOERMANN A. H., BOEHNER L. AN EXPERIMENTAL ANALYSIS OF BACTERIOPHAGE T4 HETEROZYGOTES. I. MOTTLED PLAQUES FROM CROSSES INVOLVING SIX RII LOCI. Virology. 1963 Dec;21:551–567. doi: 10.1016/0042-6822(63)90227-7. [DOI] [PubMed] [Google Scholar]
  9. Dannenberg R., Mosig G. Early intermediates in bacteriophage T4 DNA replication and recombination. J Virol. 1983 Feb;45(2):813–831. doi: 10.1128/jvi.45.2.813-831.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Datta A., Hendrix M., Lipsitch M., Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757–9762. doi: 10.1073/pnas.94.18.9757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drake J. W. Heteroduplex heterozygotes in bacteriophage T4 involving mutations of various dimensions. Proc Natl Acad Sci U S A. 1966 Mar;55(3):506–512. doi: 10.1073/pnas.55.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drake J. W. The length of the homologous pairing region for genetic recombination in bacteriophage T4. Proc Natl Acad Sci U S A. 1967 Sep;58(3):962–966. doi: 10.1073/pnas.58.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dressman H. K., Wang C. C., Karam J. D., Drake J. W. Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8042–8046. doi: 10.1073/pnas.94.15.8042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foster P. L., Trimarchi J. M., Maurer R. A. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics. 1996 Jan;142(1):25–37. doi: 10.1093/genetics/142.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franklin J. L., Mosig G. Expression of the bacteriophage T4 DNA terminase genes 16 and 17 yields multiple proteins. Gene. 1996 Oct 24;177(1-2):179–189. doi: 10.1016/0378-1119(96)00299-5. [DOI] [PubMed] [Google Scholar]
  16. George J. W., Kreuzer K. N. Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication. Genetics. 1996 Aug;143(4):1507–1520. doi: 10.1093/genetics/143.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldberg E. B. The amount of DNA between genetic markers in phage T4. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1457–1463. doi: 10.1073/pnas.56.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gorbalenya A. E. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci. 1994 Jul;3(7):1117–1120. doi: 10.1002/pro.5560030716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harris R. S., Ross K. J., Rosenberg S. M. Opposing roles of the holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics. 1996 Mar;142(3):681–691. doi: 10.1093/genetics/142.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hill C. W., Feulner G., Brody M. S., Zhao S., Sadosky A. B., Sandt C. H. Correlation of Rhs elements with Escherichia coli population structure. Genetics. 1995 Sep;141(1):15–24. doi: 10.1093/genetics/141.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Homyk T., Jr, Weil J. Deletion analysis of two nonessential regions of the T4 genome. Virology. 1974 Oct;61(2):505–523. doi: 10.1016/0042-6822(74)90286-4. [DOI] [PubMed] [Google Scholar]
  22. Howard M. T., Neece S. H., Matson S. W., Kreuzer K. N. Disruption of a topoisomerase-DNA cleavage complex by a DNA helicase. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12031–12035. doi: 10.1073/pnas.91.25.12031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huff A. C., Ward R. E., 4th, Kreuzer K. N. Mutational alteration of the breakage/resealing subunit of bacteriophage T4 DNA topoisomerase confers resistance to antitumor agent m-AMSA. Mol Gen Genet. 1990 Mar;221(1):27–32. doi: 10.1007/BF00280363. [DOI] [PubMed] [Google Scholar]
  24. Hunter N., Chambers S. R., Louis E. J., Borts R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 1996 Apr 1;15(7):1726–1733. [PMC free article] [PubMed] [Google Scholar]
  25. Kirkpatrick D. T., Petes T. D. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature. 1997 Jun 26;387(6636):929–931. doi: 10.1038/43225. [DOI] [PubMed] [Google Scholar]
  26. Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev. 1997 Jun;61(2):212–238. doi: 10.1128/mmbr.61.2.212-238.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kreuzer K. N., Saunders M., Weislo L. J., Kreuzer H. W. Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4. J Bacteriol. 1995 Dec;177(23):6844–6853. doi: 10.1128/jb.177.23.6844-6853.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kutter E. M., Wiberg J. S. Biological effects of substituting cytosine for 5-hydroxymethylcytosine in the deoxyribonucleic acid of bacteriophage T4. J Virol. 1969 Oct;4(4):439–453. doi: 10.1128/jvi.4.4.439-453.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
  30. Linder C. H., Sköld O. Control of early gene expression of bacteriophage T4: involvement of the host rho factor and the mot gene of the bacteriophage. J Virol. 1980 Feb;33(2):724–732. doi: 10.1128/jvi.33.2.724-732.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lindstrom D. M., Drake J. W. Mechanics of frameshift mutagenesis in bacteriophage T4: role of chromosome tips. Proc Natl Acad Sci U S A. 1970 Mar;65(3):617–624. doi: 10.1073/pnas.65.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luder A., Mosig G. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1101–1105. doi: 10.1073/pnas.79.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Macdonald P. M., Kutter E., Mosig G. Regulation of a bacteriophage T4 late gene, soc, which maps in an early region. Genetics. 1984 Jan;106(1):17–27. doi: 10.1093/genetics/106.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science. 1997 Sep 19;277(5333):1833–1834. doi: 10.1126/science.277.5333.1833. [DOI] [PubMed] [Google Scholar]
  35. Miner Z., Hattman S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene. J Bacteriol. 1988 Nov;170(11):5177–5184. doi: 10.1128/jb.170.11.5177-5184.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mosig G. A map of distances along the DNA molecule of phage T4. Genetics. 1968 Jun;59(2):137–151. doi: 10.1093/genetics/59.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mosig G., Berquist W., Bock S. Multiple interactions of a DNA-binding protein in vivo. III. Phage T4 gene-32 mutations differentially affect insertion-type recombination and membrane properties. Genetics. 1977 May;86(1):5–23. doi: 10.1093/genetics/86.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mosig G., Ehring R., Schliewen W., Bock S. The patterns of recombination and segregation in terminal regions of T4DNA molecules. Mol Gen Genet. 1971;113(1):51–91. doi: 10.1007/BF00335007. [DOI] [PubMed] [Google Scholar]
  39. Mosig G., Luder A., Ernst A., Canan N. Bypass of a primase requirement for bacteriophage T4 DNA replication in vivo by a recombination enzyme, endonuclease VII. New Biol. 1991 Dec;3(12):1195–1205. [PubMed] [Google Scholar]
  40. Mosig G., Macdonald P. A new membrane-associated DNA replication protein, the gene 69 product of bacteriophage T4, shares a patch of homology with the Escherichia coli dnaA protein. J Mol Biol. 1986 May 5;189(1):243–248. doi: 10.1016/0022-2836(86)90395-5. [DOI] [PubMed] [Google Scholar]
  41. Mosig G. The essential role of recombination in phage T4 growth. Annu Rev Genet. 1987;21:347–371. doi: 10.1146/annurev.ge.21.120187.002023. [DOI] [PubMed] [Google Scholar]
  42. Nelson K., Wang F. S., Boyd E. F., Selander R. K. Size and sequence polymorphism in the isocitrate dehydrogenase kinase/phosphatase gene (aceK) and flanking regions in Salmonella enterica and Escherichia coli. Genetics. 1997 Dec;147(4):1509–1520. doi: 10.1093/genetics/147.4.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Okker R. J. Partial exclusion of bacteriophage T2 by bacteriophage T4: induction of early enzymes by excluded T2. J Gen Virol. 1981 Oct;56(Pt 2):267–274. doi: 10.1099/0022-1317-56-2-267. [DOI] [PubMed] [Google Scholar]
  44. Okker R. J., Pees E., Bom V. Partial exclusion of bacteriophage T2 by bacteriophage T4: an exclusion-resistant mutation in gene 56 of T2. J Gen Virol. 1981 Mar;53(Pt 1):13–19. doi: 10.1099/0022-1317-53-1-13. [DOI] [PubMed] [Google Scholar]
  45. Piechowski M. M., Susman M. Acridine-resistance in phage T4D. Genetics. 1967 May;56(1):133–148. doi: 10.1093/genetics/56.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pribnow D., Sigurdson D. C., Gold L., Singer B. S., Napoli C., Brosius J., Dull T. J., Noller H. F. rII cistrons of bacteriophage T4. DNA sequence around the intercistronic divide and positions of genetic landmarks. J Mol Biol. 1981 Jul 5;149(3):337–376. doi: 10.1016/0022-2836(81)90477-0. [DOI] [PubMed] [Google Scholar]
  47. Rayssiguier C., Dohet C., Radman M. Interspecific recombination between Escherichia coli and Salmonella typhimurium occurs by the RecABCD pathway. Biochimie. 1991 Apr;73(4):371–374. doi: 10.1016/0300-9084(91)90103-8. [DOI] [PubMed] [Google Scholar]
  48. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  49. Repoila F., Tétart F., Bouet J. Y., Krisch H. M. Genomic polymorphism in the T-even bacteriophages. EMBO J. 1994 Sep 1;13(17):4181–4192. doi: 10.1002/j.1460-2075.1994.tb06736.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ripley L. S., Dubins J. S., deBoer J. G., DeMarini D. M., Bogerd A. M., Kreuzer K. N. Hotspot sites for acridine-induced frameshift mutations in bacteriophage T4 correspond to sites of action of the T4 type II topoisomerase. J Mol Biol. 1988 Apr 20;200(4):665–680. doi: 10.1016/0022-2836(88)90479-2. [DOI] [PubMed] [Google Scholar]
  51. Ripley L. S. Frameshift mutation: determinants of specificity. Annu Rev Genet. 1990;24:189–213. doi: 10.1146/annurev.ge.24.120190.001201. [DOI] [PubMed] [Google Scholar]
  52. Rosenberg S. M. In pursuit of a molecular mechanism for adaptive mutation. Genome. 1994 Dec;37(6):893–899. doi: 10.1139/g94-127. [DOI] [PubMed] [Google Scholar]
  53. Russell R. L., Huskey R. J. Partial exclusion between T-even bacteriophages: an incipient genetic isolation mechanism. Genetics. 1974 Dec;78(4):989–1014. doi: 10.1093/genetics/78.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Shcherbakov V. P., Plugina L. A., Kudryashova E. A. Marker-dependent recombination in T4 bacteriophage. IV. Recombinational effects of antimutator T4 DNA polymerase. Genetics. 1995 May;140(1):13–25. doi: 10.1093/genetics/140.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Shcherbakov V. P., Plugina L. A. Marker-dependent recombination in T4 bacteriophage. III. Structural prerequisites for marker discrimination. Genetics. 1991 Aug;128(4):673–685. doi: 10.1093/genetics/128.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shub D. A., Goodrich-Blair H., Eddy S. R. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci. 1994 Oct;19(10):402–404. doi: 10.1016/0968-0004(94)90086-8. [DOI] [PubMed] [Google Scholar]
  57. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  58. Streisinger G., Weigle J. PROPERTIES OF BACTERIOPHAGES T2 AND T4 WITH UNUSUAL INHERITANCE. Proc Natl Acad Sci U S A. 1956 Aug;42(8):504–510. doi: 10.1073/pnas.42.8.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Sugawara N., Pâques F., Colaiácovo M., Haber J. E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9214–9219. doi: 10.1073/pnas.94.17.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 1997 Jun 2;16(11):3303–3311. doi: 10.1093/emboj/16.11.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tyndall C., Lehnherr H., Sandmeier U., Kulik E., Bickle T. A. The type IC hsd loci of the enterobacteria are flanked by DNA with high homology to the phage P1 genome: implications for the evolution and spread of DNA restriction systems. Mol Microbiol. 1997 Feb;23(4):729–736. doi: 10.1046/j.1365-2958.1997.2531622.x. [DOI] [PubMed] [Google Scholar]
  62. Tétart F., Repoila F., Monod C., Krisch H. M. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol. 1996 May 24;258(5):726–731. doi: 10.1006/jmbi.1996.0281. [DOI] [PubMed] [Google Scholar]
  63. Vulić M., Dionisio F., Taddei F., Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9763–9767. doi: 10.1073/pnas.94.18.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Waldor M. K., Mekalanos J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996 Jun 28;272(5270):1910–1914. doi: 10.1126/science.272.5270.1910. [DOI] [PubMed] [Google Scholar]
  65. Waldor M. K., Rubin E. J., Pearson G. D., Kimsey H., Mekalanos J. J. Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol. 1997 Jun;24(5):917–926. doi: 10.1046/j.1365-2958.1997.3911758.x. [DOI] [PubMed] [Google Scholar]
  66. Wu D. G., Wu C. H., Black L. W. Reiterated gene amplifications at specific short homology sequences in phage T4 produce Hp17 mutants. J Mol Biol. 1991 Apr 20;218(4):705–721. doi: 10.1016/0022-2836(91)90260-d. [DOI] [PubMed] [Google Scholar]
  67. Yee J. K., Marsh R. C. Alignment of a restriction map with the genetic map of bacteriophage T4. J Virol. 1981 Apr;38(1):115–124. doi: 10.1128/jvi.38.1.115-124.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zahrt T. C., Maloy S. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9786–9791. doi: 10.1073/pnas.94.18.9786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. de Wind N., Dekker M., Berns A., Radman M., te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995 Jul 28;82(2):321–330. doi: 10.1016/0092-8674(95)90319-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES