Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):739–747. doi: 10.1093/genetics/149.2.739

The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis.

T Mitchell-Olds 1, D Pedersen 1
PMCID: PMC1460200  PMID: 9611188

Abstract

To find the genes controlling quantitative variation, we need model systems where functional information on physiology, development, and gene regulation can guide evolutionary inferences. We mapped quantitative trait loci (QTLs) influencing quantitative levels of enzyme activity in primary and secondary metabolism in Arabidopsis. All 10 enzymes showed highly significant quantitative genetic variation. Strong positive genetic correlations were found among activity levels of 5 glycolytic enzymes, PGI, PGM, GPD, FBP, and G6P, suggesting that enzymes with closely related metabolic functions are coregulated. Significant QTLs were found influencing activity of most enzymes. Some enzyme activity QTLs mapped very close to known enzyme-encoding loci (e.g., hexokinase, PGI, and PGM). A hexokinase QTL is attributable to cis-acting regulatory variation at the AtHXK1 locus or a closely linked regulatory locus, rather than polypeptide sequence differences. We also found a QTL on chromosome IV that may be a joint regulator of GPD, PGI, and G6P activity. In addition, a QTL affecting PGM activity maps within 700 kb of the PGM-encoding locus. This QTL is predicted to alter starch biosynthesis by 3.4%, corresponding with theoretical models, suggesting that QTLs reflect pleiotropic effects of mutant alleles.

Full Text

The Full Text of this article is available as a PDF (108.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala F. J., Hartl D. L. Molecular drift of the bride of sevenless (boss) gene in Drosophila. Mol Biol Evol. 1993 Sep;10(5):1030–1040. doi: 10.1093/oxfordjournals.molbev.a040052. [DOI] [PubMed] [Google Scholar]
  2. Berry C. O., Kauvar L. M. Spin dialysis desalting of small protein samples in a membrane-bottomed 96-well microplate. Biotechniques. 1993 Mar;14(3):340–340. [PubMed] [Google Scholar]
  3. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brogue K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C. J., Broglie R. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991 Nov 22;254(5035):1194–1197. doi: 10.1126/science.254.5035.1194. [DOI] [PubMed] [Google Scholar]
  6. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheverud J. M., Routman E. J., Duarte F. A., van Swinderen B., Cothran K., Perel C. Quantitative trait loci for murine growth. Genetics. 1996 Apr;142(4):1305–1319. doi: 10.1093/genetics/142.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark A. G., Keith L. E. Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics. 1988 Jul;119(3):595–607. doi: 10.1093/genetics/119.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark A. G., Wang L., Hulleberg T. P-element-induced variation in metabolic regulation in Drosophila. Genetics. 1995 Jan;139(1):337–348. doi: 10.1093/genetics/139.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eanes W. F., Kirchner M., Yoon J., Biermann C. H., Wang I. N., McCartney M. A., Verrelli B. C. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. doi: 10.1093/genetics/144.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eimert K., Wang S. M., Lue W. I., Chen J. Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis. Plant Cell. 1995 Oct;7(10):1703–1712. doi: 10.1105/tpc.7.10.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gierow P., Jergil B. Spectrophotometric method for glucose-6-phosphate phosphatase. Methods Enzymol. 1982;89(Pt 500):44–47. doi: 10.1016/s0076-6879(82)89010-1. [DOI] [PubMed] [Google Scholar]
  14. Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  16. Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jang J. C., León P., Zhou L., Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997 Jan;9(1):5–19. doi: 10.1105/tpc.9.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keightley P. D., Hardge T., May L., Bulfield G. A genetic map of quantitative trait loci for body weight in the mouse. Genetics. 1996 Jan;142(1):227–235. doi: 10.1093/genetics/142.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keightley P. D., Kacser H. Dominance, pleiotropy and metabolic structure. Genetics. 1987 Oct;117(2):319–329. doi: 10.1093/genetics/117.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keith B., Dong X. N., Ausubel F. M., Fink G. R. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8821–8825. doi: 10.1073/pnas.88.19.8821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kruckeberg A. L., Neuhaus H. E., Feil R., Gottlieb L. D., Stitt M. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients. Biochem J. 1989 Jul 15;261(2):457–467. doi: 10.1042/bj2610457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lagziel A., Lipkin E., Soller M. Association between SSCP haplotypes at the bovine growth hormone gene and milk protein percentage. Genetics. 1996 Mar;142(3):945–951. doi: 10.1093/genetics/142.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  27. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lyman R. F., Lawrence F., Nuzhdin S. V., Mackay T. F. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics. 1996 May;143(1):277–292. doi: 10.1093/genetics/143.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mackay T. F., Fry J. D. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics. 1996 Oct;144(2):671–688. doi: 10.1093/genetics/144.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 1995 Jul;140(3):1105–1109. doi: 10.1093/genetics/140.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
  33. Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  36. Rao I. M., Fredeen A. L., Terry N. Leaf Phosphate Status, Photosynthesis, and Carbon Partitioning in Sugar Beet: III. Diurnal Changes in Carbon Partitioning and Carbon Export. Plant Physiol. 1990 Jan;92(1):29–36. doi: 10.1104/pp.92.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schaeffer S. W., Miller E. L. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1992 Sep;132(1):163–178. doi: 10.1093/genetics/132.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shook D. R., Brooks A., Johnson T. E. Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics. 1996 Mar;142(3):801–817. doi: 10.1093/genetics/142.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stam L. F., Laurie C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1559–1564. doi: 10.1093/genetics/144.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Templeton A. R., Boerwinkle E., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics. 1987 Oct;117(2):343–351. doi: 10.1093/genetics/117.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Templeton A. R. Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics. 1996 Nov;144(3):1263–1270. doi: 10.1093/genetics/144.3.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES