Skip to main content
Genetics logoLink to Genetics
. 1998 Aug;149(4):1945–1957. doi: 10.1093/genetics/149.4.1945

Molecular population genetics of the southern elephant seal Mirounga leonina.

R W Slade 1, C Moritz 1, A R Hoelzel 1, H R Burton 1
PMCID: PMC1460292  PMID: 9691049

Abstract

Southern elephant seals breed on sub-Antarctic islands and have a circumpolar distribution. We assayed mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) variation in the three main populations in the south Atlantic, south Indian, and south Pacific oceans, and a smaller continental population in South America. Population structure of mtDNA was strong and not consistent with isolation by distance. The nDNA loci, although less informative, were consistent with the mtDNA results. Geographic structure appears to be dominated by historical processes, not contemporary gene flow. Uncorrected levels of nucleotide diversity for mtDNA control region I (2.86%) and nDNA (0.09%) were similar to those in humans and mice. Mutation rates for control region I (75 x 10(-9) substitutions per site per year) and nDNA (1.23 x 10(-9)) were similar to those in other mammals. Female effective population size and total effective population size were roughly equal at approximately 4 x 10(4), indicating a twofold greater rate of drift for mtDNA. Effective breeding sex ratio of four to five females per male was estimated from nucleotide diversity and mutation rates for mtDNA and nDNA, and was much less than behavioral observations would suggest. There was no evidence for selection at any of the assayed loci.

Full Text

The Full Text of this article is available as a PDF (203.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W., Twiss S., Pomeroy P. P., Anderson S. S. Male mating success and paternity in the grey seal, Halichoerus grypus: a study using DNA fingerprinting. Proc Biol Sci. 1993 Jun 22;252(1335):199–207. doi: 10.1098/rspb.1993.0066. [DOI] [PubMed] [Google Scholar]
  2. Aquadro C. F. Why is the genome variable? Insights from Drosophila. Trends Genet. 1992 Oct;8(10):355–362. doi: 10.1016/0168-9525(92)90281-8. [DOI] [PubMed] [Google Scholar]
  3. Birky C. W., Jr, Maruyama T., Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics. 1983 Mar;103(3):513–527. doi: 10.1093/genetics/103.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  6. CLIMAP Project Members The surface of the ice-age Earth. Science. 1976 Mar 19;191(4232):1131–1137. doi: 10.1126/science.191.4232.1131. [DOI] [PubMed] [Google Scholar]
  7. Chakraborty R., Nei M. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol. 1974 Jun;5(3):460–469. doi: 10.1016/0040-5809(74)90064-1. [DOI] [PubMed] [Google Scholar]
  8. Crow J. F., Aoki K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6073–6077. doi: 10.1073/pnas.81.19.6073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Easteal S. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics. 1990 Jan;124(1):165–173. doi: 10.1093/genetics/124.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoelzel A. R., Halley J., O'Brien S. J., Campagna C., Arnbom T., Le Boeuf B., Ralls K., Dover G. A. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J Hered. 1993 Nov-Dec;84(6):443–449. doi: 10.1093/oxfordjournals.jhered.a111370. [DOI] [PubMed] [Google Scholar]
  13. Horai S., Hayasaka K., Kondo R., Tsugane K., Takahata N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532–536. doi: 10.1073/pnas.92.2.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishida N., Oyunsuren T., Mashima S., Mukoyama H., Saitou N. Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse. J Mol Evol. 1995 Aug;41(2):180–188. doi: 10.1007/BF00170671. [DOI] [PubMed] [Google Scholar]
  16. Kregel K. C., Johnson D. G., Seals D. R. Tissue-specific noradrenergic activity during acute heat stress in rats. J Appl Physiol (1985) 1993 Apr;74(4):1988–1993. doi: 10.1152/jappl.1993.74.4.1988. [DOI] [PubMed] [Google Scholar]
  17. Kreitman M. E., Aguadé M. Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics. 1986 Sep;114(1):93–110. doi: 10.1093/genetics/114.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lambert D. M., Millar C. D., Jack K., Anderson S., Craig J. L. Single- and multilocus DNA fingerprinting of communally breeding pukeko: do copulations or dominance ensure reproductive success? Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9641–9645. doi: 10.1073/pnas.91.20.9641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lessa E. P., Applebaum G. Screening techniques for detecting allelic variation in DNA sequences. Mol Ecol. 1993 Apr;2(2):119–129. doi: 10.1111/j.1365-294x.1993.tb00006.x. [DOI] [PubMed] [Google Scholar]
  20. Li W. H., Tanimura M., Sharp P. M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol. 1987;25(4):330–342. doi: 10.1007/BF02603118. [DOI] [PubMed] [Google Scholar]
  21. McElroy D., Moran P., Bermingham E., Kornfield I. REAP: an integrated environment for the manipulation and phylogenic analysis of restriction data. J Hered. 1992 Mar-Apr;83(2):157–158. doi: 10.1093/oxfordjournals.jhered.a111180. [DOI] [PubMed] [Google Scholar]
  22. Moore S. S., Barendse W., Berger K. T., Armitage S. M., Hetzel D. J. Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Anim Genet. 1992;23(5):463–467. doi: 10.1111/j.1365-2052.1992.tb02168.x. [DOI] [PubMed] [Google Scholar]
  23. Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nachman M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics. 1997 Nov;147(3):1303–1316. doi: 10.1093/genetics/147.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  26. Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Slade R. W., Moritz C., Heideman A., Hale P. T. Rapid assessment of single-copy nuclear DNA variation in diverse species. Mol Ecol. 1993 Dec;2(6):359–373. doi: 10.1111/j.1365-294x.1993.tb00029.x. [DOI] [PubMed] [Google Scholar]
  28. Slade R. W., Moritz C., Heideman A. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol Biol Evol. 1994 May;11(3):341–356. doi: 10.1093/oxfordjournals.molbev.a040117. [DOI] [PubMed] [Google Scholar]
  29. Stoneking M., Sherry S. T., Redd A. J., Vigilant L. New approaches to dating suggest a recent age for the human mtDNA ancestor. Philos Trans R Soc Lond B Biol Sci. 1992 Aug 29;337(1280):167–175. doi: 10.1098/rstb.1992.0094. [DOI] [PubMed] [Google Scholar]
  30. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takahata N. Allelic genealogy and human evolution. Mol Biol Evol. 1993 Jan;10(1):2–22. doi: 10.1093/oxfordjournals.molbev.a039995. [DOI] [PubMed] [Google Scholar]
  32. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  33. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
  34. Wakeley J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J Mol Evol. 1993 Dec;37(6):613–623. doi: 10.1007/BF00182747. [DOI] [PubMed] [Google Scholar]
  35. Waples R. S. Estimation of allele frequencies at isoloci. Genetics. 1988 Feb;118(2):371–384. doi: 10.1093/genetics/118.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  37. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES