Skip to main content
Genetics logoLink to Genetics
. 1998 Aug;149(4):1753–1761. doi: 10.1093/genetics/149.4.1753

Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus.

Y Murata 1, M Fujii 1, M E Zolan 1, T Kamada 1
PMCID: PMC1460293  PMID: 9691034

Abstract

A homokaryotic strain (5337) in our culture stock of Coprinus cinereus produced fertile fruit bodies after prolonged culture. Microscopic examination revealed that hyphae dedifferentiated from the tissues of one of the fruit bodies, as well as all basidiospore derivatives from the fruit body, exhibited pseudoclamps, whereas vegetative hyphae of 5337, from which the fruit body developed, had no clamp connections. Genetic analysis showed that the formation of pseudoclamps results from a recessive mutation in a gene designated pcc1 (pseudoclamp connection formation), which is distinct from the A and B mating type genes. Cloning and sequencing of the pcc1 gene and cDNA identified an ORF of 1683 bp interrupted by one intron. Database searches revealed that pcc1 encodes an SRY-type HMG protein. The HMG box shared 44, 41, and 29% sequence identities (>80 amino acids) to those of FPR1 of Podospora anserina, MAT-Mc of Schizosaccharomyces pombe, and prf1 of Ustilago maydis, respectively. Northern analysis revealed that the level of pcc1 expression is higher in the dikaryon, in homokaryons in which the A and B mating type developmental sequences are individually activated, than in the homokaryon in which these sequences are not active. Sequencing of the pcc1-1 mutant allele revealed that the mutant carries a nonsense mutation at serine 211, a residue located between the HMG box and the C terminus. Based on these results, possible roles of the pcc1 gene in the sexual development of homobasidiomycetes are discussed.

Full Text

The Full Text of this article is available as a PDF (252.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aono T., Yanai H., Miki F., Davey J., Shimoda C. Mating pheromone-induced expression of the mat1-Pm gene of Schizosaccharomyces pombe: identification of signalling components and characterization of upstream controlling elements. Yeast. 1994 Jun;10(6):757–770. doi: 10.1002/yea.320100607. [DOI] [PubMed] [Google Scholar]
  3. Asante-Owusu R. N., Banham A. H., Böhnert H. U., Mellor E. J., Casselton L. A. Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene. 1996 Jun 12;172(1):25–31. doi: 10.1016/0378-1119(96)00177-1. [DOI] [PubMed] [Google Scholar]
  4. Banham A. H., Asante-Owusu R. N., Gottgens B., Thompson S., Kingsnorth C. S., Mellor E., Casselton L. A. An N-Terminal Dimerization Domain Permits Homeodomain Proteins To Choose Compatible Partners and Initiate Sexual Development in the Mushroom Coprinus cinereus. Plant Cell. 1995 Jun;7(6):773–783. doi: 10.1105/tpc.7.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Binninger D. M., Skrzynia C., Pukkila P. J., Casselton L. A. DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J. 1987 Apr;6(4):835–840. doi: 10.1002/j.1460-2075.1987.tb04828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Debuchy R., Arnaise S., Lecellier G. The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet. 1993 Dec;241(5-6):667–673. doi: 10.1007/BF00279909. [DOI] [PubMed] [Google Scholar]
  7. Debuchy R., Coppin E. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet. 1992 May;233(1-2):113–121. doi: 10.1007/BF00587568. [DOI] [PubMed] [Google Scholar]
  8. Dooijes D., van de Wetering M., Knippels L., Clevers H. The Schizosaccharomyces pombe mating-type gene mat-Mc encodes a sequence-specific DNA-binding high mobility group box protein. J Biol Chem. 1993 Nov 25;268(33):24813–24817. [PubMed] [Google Scholar]
  9. Ferreira A. V., Saupe S., Glass N. L. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol Gen Genet. 1996 Apr 10;250(6):767–774. doi: 10.1007/BF02172989. [DOI] [PubMed] [Google Scholar]
  10. Gillissen B., Bergemann J., Sandmann C., Schroeer B., Bölker M., Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992 Feb 21;68(4):647–657. doi: 10.1016/0092-8674(92)90141-x. [DOI] [PubMed] [Google Scholar]
  11. Harley V. R., Jackson D. I., Hextall P. J., Hawkins J. R., Berkovitz G. D., Sockanathan S., Lovell-Badge R., Goodfellow P. N. DNA binding activity of recombinant SRY from normal males and XY females. Science. 1992 Jan 24;255(5043):453–456. doi: 10.1126/science.1734522. [DOI] [PubMed] [Google Scholar]
  12. Hartmann H. A., Kahmann R., Bölker M. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 1996 Apr 1;15(7):1632–1641. [PMC free article] [PubMed] [Google Scholar]
  13. Iwasa M, Tanabe S, Kamada T. The Two Nuclei in the Dikaryon of the Homobasidiomycete Coprinus cinereus Change Position after Each Conjugate Division. Fungal Genet Biol. 1998 Feb;23(1):110–116. doi: 10.1006/fgbi.1997.1019. [DOI] [PubMed] [Google Scholar]
  14. Kelly M., Burke J., Smith M., Klar A., Beach D. Four mating-type genes control sexual differentiation in the fission yeast. EMBO J. 1988 May;7(5):1537–1547. doi: 10.1002/j.1460-2075.1988.tb02973.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kämper J., Reichmann M., Romeis T., Bölker M., Kahmann R. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell. 1995 Apr 7;81(1):73–83. doi: 10.1016/0092-8674(95)90372-0. [DOI] [PubMed] [Google Scholar]
  16. Kües U., Richardson W. V., Tymon A. M., Mutasa E. S., Göttgens B., Gaubatz S., Gregoriades A., Casselton L. A. The combination of dissimilar alleles of the A alpha and A beta gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus. Genes Dev. 1992 Apr;6(4):568–577. doi: 10.1101/gad.6.4.568. [DOI] [PubMed] [Google Scholar]
  17. Laudet V., Stehelin D., Clevers H. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 1993 May 25;21(10):2493–2501. doi: 10.1093/nar/21.10.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Shea S. F., Chaure P. T., Halsall J. R., Olesnicky N. S., Leibbrandt A., Connerton I. F., Casselton L. A. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics. 1998 Mar;148(3):1081–1090. doi: 10.1093/genetics/148.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Petersen J., Weilguny D., Egel R., Nielsen O. Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Mol Cell Biol. 1995 Jul;15(7):3697–3707. doi: 10.1128/mcb.15.7.3697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Philley M. L., Staben C. Functional analyses of the Neurospora crassa MT a-1 mating type polypeptide. Genetics. 1994 Jul;137(3):715–722. doi: 10.1093/genetics/137.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rao P. S., Niederpruem D. J. Carbohydrate metabolism during morphogenesis of Coprinus lagopus (sensu Buller). J Bacteriol. 1969 Dec;100(3):1222–1228. doi: 10.1128/jb.100.3.1222-1228.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Specht C. A., Stankis M. M., Giasson L., Novotny C. P., Ullrich R. C. Functional analysis of the homeodomain-related proteins of the A alpha locus of Schizophyllum commune. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7174–7178. doi: 10.1073/pnas.89.15.7174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Staben C., Yanofsky C. Neurospora crassa a mating-type region. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4917–4921. doi: 10.1073/pnas.87.13.4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stankis M. M., Specht C. A., Yang H., Giasson L., Ullrich R. C., Novotny C. P. The A alpha mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7169–7173. doi: 10.1073/pnas.89.15.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stassen N. Y., Logsdon J. M., Jr, Vora G. J., Offenberg H. H., Palmer J. D., Zolan M. E. Isolation and characterization of rad51 orthologs from Coprinus cinereus and Lycopersicon esculentum, and phylogenetic analysis of eukaryotic recA homologs. Curr Genet. 1997 Feb;31(2):144–157. doi: 10.1007/s002940050189. [DOI] [PubMed] [Google Scholar]
  26. Sugimoto A., Iino Y., Maeda T., Watanabe Y., Yamamoto M. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 1991 Nov;5(11):1990–1999. doi: 10.1101/gad.5.11.1990. [DOI] [PubMed] [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turgeon B. G., Bohlmann H., Ciuffetti L. M., Christiansen S. K., Yang G., Schäfer W., Yoder O. C. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet. 1993 Apr;238(1-2):270–284. doi: 10.1007/BF00279556. [DOI] [PubMed] [Google Scholar]
  29. Tymon A. M., Kües U., Richardson W. V., Casselton L. A. A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain. EMBO J. 1992 May;11(5):1805–1813. doi: 10.1002/j.1460-2075.1992.tb05232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vaillancourt L. J., Raudaskoski M., Specht C. A., Raper C. A. Multiple genes encoding pheromones and a pheromone receptor define the B beta 1 mating-type specificity in Schizophyllum commune. Genetics. 1997 Jun;146(2):541–551. doi: 10.1093/genetics/146.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wendland J., Vaillancourt L. J., Hegner J., Lengeler K. B., Laddison K. J., Specht C. A., Raper C. A., Kothe E. The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J. 1995 Nov 1;14(21):5271–5278. doi: 10.1002/j.1460-2075.1995.tb00211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zolan M. E., Crittenden J. R., Heyler N. K., Seitz L. C. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries. Nucleic Acids Res. 1992 Aug 11;20(15):3993–3999. doi: 10.1093/nar/20.15.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zolan M. E., Pukkila P. J. Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol. 1986 Jan;6(1):195–200. doi: 10.1128/mcb.6.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES