Skip to main content
Genetics logoLink to Genetics
. 1998 Nov;150(3):1079–1089. doi: 10.1093/genetics/150.3.1079

Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex.

M Aguadé 1
PMCID: PMC1460384  PMID: 9799260

Abstract

The Acp26Aa and Acp26Ab genes that code for male accessory gland proteins are tandemly arranged in the species of the Drosophila melanogaster complex. An approximately 1.6-kb region encompassing both genes has been sequenced in 10, 24, and 18 lines from Spain, Ivory Coast, and Malawi, respectively; the previously studied 10 lines from North Carolina have also been included in the analyses. A total of 110 nucleotide and 4 length polymorphisms were detected. Silent variation for the whole Acp26A region was slightly higher in African than in non-African populations, while for both genes nonsynonymous variation was similar in all populations studied. Based on Fst estimates no major genetic differentiation was detected between East and West Africa, while in general non-African populations were strongly differentiated from both African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites revealed that directional selection acting on amino acid replacement changes has driven the evolution of the Acp26Aa protein in the last 2.5 myr.

Full Text

The Full Text of this article is available as a PDF (165.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertram M. J., Neubaum D. M., Wolfner M. F. Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):971–980. doi: 10.1016/s0965-1748(96)00064-1. [DOI] [PubMed] [Google Scholar]
  4. Bénassi V., Aulard S., Mazeau S., Veuille M. Molecular variation of Adh and P6 genes in an African population of Drosophila melanogaster and its relation to chromosomal inversions. Genetics. 1993 Jul;134(3):789–799. doi: 10.1093/genetics/134.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eanes W. F., Kirchner M., Yoon J., Biermann C. H., Wang I. N., McCartney M. A., Verrelli B. C. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. doi: 10.1093/genetics/144.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
  9. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee Y. H., Ota T., Vacquier V. D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol. 1995 Mar;12(2):231–238. doi: 10.1093/oxfordjournals.molbev.a040200. [DOI] [PubMed] [Google Scholar]
  12. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  13. Monsma S. A., Wolfner M. F. Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Dev. 1988 Sep;2(9):1063–1073. doi: 10.1101/gad.2.9.1063. [DOI] [PubMed] [Google Scholar]
  14. Park M., Wolfner M. F. Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev Biol. 1995 Oct;171(2):694–702. doi: 10.1006/dbio.1995.1315. [DOI] [PubMed] [Google Scholar]
  15. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  16. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tsaur S. C., Wu C. I. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol Biol Evol. 1997 May;14(5):544–549. doi: 10.1093/oxfordjournals.molbev.a025791. [DOI] [PubMed] [Google Scholar]
  18. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES