Skip to main content
Genetics logoLink to Genetics
. 1999 Feb;151(2):849–863. doi: 10.1093/genetics/151.2.849

Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1.

P E Grini 1, A Schnittger 1, H Schwarz 1, I Zimmermann 1, B Schwab 1, G Jürgens 1, M Hülskamp 1
PMCID: PMC1460497  PMID: 9927475

Abstract

The life cycle of plants comprises two alternating generations, the diploid sporophyte (spore-bearing plant) and the haploid gametophyte (gamete-bearing plant). In contrast to animals, the postmeiotic cells give rise to haploid organisms whose function is to produce the gametes and to mediate fertilization. Analysis of gametophyte development and function has been hampered by the difficulty of identifying haplo-phase-specific mutants in conventional mutagenesis screens. Here we use a genetic strategy that is based on segregation distortion of nearby visible markers to screen for EMS-induced gametophytic mutants in Arabidopsis thaliana. Using the multiple marker chromosome mm1 we have isolated seven lines that displayed an altered segregation of markers. Reciprocal backcrosses of these lines showed a marked reduction of the transmission of the male and/or female gametes. Phenotypic analysis revealed that different aspects of either gametophytic development or function were affected. Three male gametophytic lines showed specific arrests during pollen development. One male gametophytic line was specifically defective in pollen tube elongation. Three gametophytic lines showed variable defects in both male and female gametophytic development.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chaudhury A. M. Nuclear Genes Controlling Male Fertility. Plant Cell. 1993 Oct;5(10):1277–1283. doi: 10.1105/tpc.5.10.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Y. C., McCormick S. sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development. 1996 Oct;122(10):3243–3253. doi: 10.1242/dev.122.10.3243. [DOI] [PubMed] [Google Scholar]
  3. Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
  4. Coleman A. W., Goff L. J. Applications of fluorochromes to pollen biology. I. Mithramycin and 4',6-diamidino-2-phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA. Stain Technol. 1985 May;60(3):145–154. doi: 10.3109/10520298509113905. [DOI] [PubMed] [Google Scholar]
  5. Drews G. N., Lee D., Christensen C. A. Genetic analysis of female gametophyte development and function. Plant Cell. 1998 Jan;10(1):5–17. doi: 10.1105/tpc.10.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feldmann K. A., Coury D. A., Christianson M. L. Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics. 1997 Nov;147(3):1411–1422. doi: 10.1093/genetics/147.3.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaiser J. C., Robinson-Beers K., Gasser C. S. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. Plant Cell. 1995 Mar;7(3):333–345. doi: 10.1105/tpc.7.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grossniklaus U., Schneitz K. The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol. 1998 Apr;9(2):227–238. doi: 10.1006/scdb.1997.0214. [DOI] [PubMed] [Google Scholar]
  10. Grossniklaus U., Vielle-Calzada J. P., Hoeppner M. A., Gagliano W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science. 1998 Apr 17;280(5362):446–450. doi: 10.1126/science.280.5362.446. [DOI] [PubMed] [Google Scholar]
  11. Howden R., Park S. K., Moore J. M., Orme J., Grossniklaus U., Twell D. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics. 1998 Jun;149(2):621–631. doi: 10.1093/genetics/149.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hülskamp M., Kopczak S. D., Horejsi T. F., Kihl B. K., Pruitt R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):703–714. doi: 10.1046/j.1365-313x.1995.08050703.x. [DOI] [PubMed] [Google Scholar]
  13. Hülskamp M., Misŕa S., Jürgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994 Feb 11;76(3):555–566. doi: 10.1016/0092-8674(94)90118-x. [DOI] [PubMed] [Google Scholar]
  14. Jeppesen C., Nielsen P. E. Photofootprinting of drug-binding sites on DNA using diazo- and azido-9-aminoacridine derivatives. Eur J Biochem. 1989 Jun 15;182(2):437–444. doi: 10.1111/j.1432-1033.1989.tb14850.x. [DOI] [PubMed] [Google Scholar]
  15. Jofuku K. D., den Boer B. G., Van Montagu M., Okamuro J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211–1225. doi: 10.1105/tpc.6.9.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leon-Kloosterziel K. M., Keijzer C. J., Koornneef M. A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development. Plant Cell. 1994 Mar;6(3):385–392. doi: 10.1105/tpc.6.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  19. Mascarenhas J. P. The Male Gametophyte of Flowering Plants. Plant Cell. 1989 Jul;1(7):657–664. doi: 10.1105/tpc.1.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCormick S. Male Gametophyte Development. Plant Cell. 1993 Oct;5(10):1265–1275. doi: 10.1105/tpc.5.10.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meyerowitz E. M., Pruitt R. E. Arabidopsis thaliana and Plant Molecular Genetics. Science. 1985 Sep 20;229(4719):1214–1218. doi: 10.1126/science.229.4719.1214. [DOI] [PubMed] [Google Scholar]
  22. Moore J. M., Calzada J. P., Gagliano W., Grossniklaus U. Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol. 1997;62:35–47. [PubMed] [Google Scholar]
  23. Ohad N., Margossian L., Hsu Y. C., Williams C., Repetti P., Fischer R. L. A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319–5324. doi: 10.1073/pnas.93.11.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ray S. M., Park S. S., Ray A. Pollen tube guidance by the female gametophyte. Development. 1997 Jun;124(12):2489–2498. doi: 10.1242/dev.124.12.2489. [DOI] [PubMed] [Google Scholar]
  25. Reiser L., Fischer R. L. The Ovule and the Embryo Sac. Plant Cell. 1993 Oct;5(10):1291–1301. doi: 10.1105/tpc.5.10.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schiefelbein J. W., Somerville C. Genetic Control of Root Hair Development in Arabidopsis thaliana. Plant Cell. 1990 Mar;2(3):235–243. doi: 10.1105/tpc.2.3.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schiefelbein J., Galway M., Masucci J., Ford S. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol. 1993 Nov;103(3):979–985. doi: 10.1104/pp.103.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singleton W R, Mangelsdorf P C. Gametic Lethals on the Fourth Chromosome of Maize. Genetics. 1940 Jul;25(4):366–390. doi: 10.1093/genetics/25.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Springer P. S., McCombie W. R., Sundaresan V., Martienssen R. A. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science. 1995 May 12;268(5212):877–880. doi: 10.1126/science.7754372. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES