Skip to main content
Genetics logoLink to Genetics
. 1999 Mar;151(3):979–987. doi: 10.1093/genetics/151.3.979

Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata.

B P Cormack 1, S Falkow 1
PMCID: PMC1460538  PMID: 10049916

Abstract

The opportunistic pathogen Candida glabrata causes significant disease in humans. To develop genetic tools to investigate the pathogenicity of this organism, we have constructed ura3 and his3 auxotrophic strains by deleting the relevant coding regions in a C. glabrata clinical isolate. Linearized plasmids carrying a Saccharomyces cerevisiae URA3 gene efficiently transformed the ura3 auxotroph to prototrophy. Homologous recombination events were observed when the linearized plasmid carried short terminal regions homologous with the chromosome. In contrast, in the absence of any chromosomal homology, the plasmid integrated by illegitimate recombination into random sites in the genome. Sequence analysis of the target sites revealed that for the majority of illegitimate transformants there was no microhomology with the integration site. Approximately 0.25% of the insertions resulted in amino acid auxotrophy, suggesting that insertion was random at a gross level. Sequence analysis suggested that illegitimate recombination is nonrandom at the single-gene level and that the integrating plasmid has a preference for inserting into noncoding regions of the genome. Analysis of the relative numbers of homologous and illegitimate recombination events suggests that C. glabrata possesses efficient systems for both homologous and nonhomologous recombination.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. H., Gocke E., Bonven B. J., Nielsen O. F., Westergaard O. Topoisomerase I has a strong binding preference for a conserved hexadecameric sequence in the promoter region of the rRNA gene from Tetrahymena pyriformis. Nucleic Acids Res. 1985 Mar 11;13(5):1543–1557. doi: 10.1093/nar/13.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Been M. D., Burgess R. R., Champoux J. J. Nucleotide sequence preference at rat liver and wheat germ type 1 DNA topoisomerase breakage sites in duplex SV40 DNA. Nucleic Acids Res. 1984 Apr 11;12(7):3097–3114. doi: 10.1093/nar/12.7.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chalker D. L., Sandmeyer S. B. Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev. 1992 Jan;6(1):117–128. doi: 10.1101/gad.6.1.117. [DOI] [PubMed] [Google Scholar]
  4. Fidel P. L., Jr, Cutright J. L., Tait L., Sobel J. D. A murine model of Candida glabrata vaginitis. J Infect Dis. 1996 Feb;173(2):425–431. doi: 10.1093/infdis/173.2.425. [DOI] [PubMed] [Google Scholar]
  5. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  7. Ji H., Moore D. P., Blomberg M. A., Braiterman L. T., Voytas D. F., Natsoulis G., Boeke J. D. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell. 1993 Jun 4;73(5):1007–1018. doi: 10.1016/0092-8674(93)90278-x. [DOI] [PubMed] [Google Scholar]
  8. Kim J. M., Vanguri S., Boeke J. D., Gabriel A., Voytas D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998 May;8(5):464–478. doi: 10.1101/gr.8.5.464. [DOI] [PubMed] [Google Scholar]
  9. Kitada K., Yamaguchi E., Arisawa M. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene. 1995 Nov 20;165(2):203–206. doi: 10.1016/0378-1119(95)00552-h. [DOI] [PubMed] [Google Scholar]
  10. Kitada K., Yamaguchi E., Arisawa M. Isolation of a Candida glabrata centromere and its use in construction of plasmid vectors. Gene. 1996 Oct 10;175(1-2):105–108. doi: 10.1016/0378-1119(96)00132-1. [DOI] [PubMed] [Google Scholar]
  11. Maleszka R., Clark-Walker G. D. Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast. 1993 Jan;9(1):53–58. doi: 10.1002/yea.320090107. [DOI] [PubMed] [Google Scholar]
  12. Mehra R. K., Thorvaldsen J. L., Macreadie I. G., Winge D. R. Cloning system for Candida glabrata using elements from the metallothionein-IIa-encoding gene that confer autonomous replication. Gene. 1992 Apr 1;113(1):119–124. doi: 10.1016/0378-1119(92)90678-i. [DOI] [PubMed] [Google Scholar]
  13. Redondo-Lopez V., Lynch M., Schmitt C., Cook R., Sobel J. D. Torulopsis glabrata vaginitis: clinical aspects and susceptibility to antifungal agents. Obstet Gynecol. 1990 Oct;76(4):651–655. [PubMed] [Google Scholar]
  14. Schiestl R. H., Petes T. D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585–7589. doi: 10.1073/pnas.88.17.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schiestl R. H., Zhu J., Petes T. D. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jul;14(7):4493–4500. doi: 10.1128/mcb.14.7.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Struhl K. The new yeast genetics. 1983 Sep 29-Oct 5Nature. 305(5933):391–397. doi: 10.1038/305391a0. [DOI] [PubMed] [Google Scholar]
  17. Whelan W. L., Kwon-Chung K. J. Parasexual genetics of Torulopsis glabrata. J Bacteriol. 1987 Nov;169(11):4991–4994. doi: 10.1128/jb.169.11.4991-4994.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhou P., Szczypka M. S., Young R., Thiele D. J. A system for gene cloning and manipulation in the yeast Candida glabrata. Gene. 1994 May 3;142(1):135–140. doi: 10.1016/0378-1119(94)90368-9. [DOI] [PubMed] [Google Scholar]
  19. Zhu J., Schiestl R. H. Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Apr;16(4):1805–1812. doi: 10.1128/mcb.16.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zou S., Voytas D. F. Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7412–7416. doi: 10.1073/pnas.94.14.7412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES