Skip to main content
Genetics logoLink to Genetics
. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531

Preservation of duplicate genes by complementary, degenerative mutations.

A Force 1, M Lynch 1, F B Pickett 1, A Amores 1, Y L Yan 1, J Postlethwait 1
PMCID: PMC1460548  PMID: 10101175

Abstract

The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation.Sidow 1996(p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene.Walsh 1995 (p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely.Nadeau and Sankoff 1997 (p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself.Cooke et al. 1997 (p. 362)

Full Text

The Full Text of this article is available as a PDF (236.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amores A., Force A., Yan Y. L., Joly L., Amemiya C., Fritz A., Ho R. K., Langeland J., Prince V., Wang Y. L. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998 Nov 27;282(5394):1711–1714. doi: 10.1126/science.282.5394.1711. [DOI] [PubMed] [Google Scholar]
  3. Arnone M. I., Davidson E. H. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997 May;124(10):1851–1864. doi: 10.1242/dev.124.10.1851. [DOI] [PubMed] [Google Scholar]
  4. Bailey G. S., Poulter R. T., Stockwell P. A. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5575–5579. doi: 10.1073/pnas.75.11.5575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bender W., Akam M., Karch F., Beachy P. A., Peifer M., Spierer P., Lewis E. B., Hogness D. S. Molecular Genetics of the Bithorax Complex in Drosophila melanogaster. Science. 1983 Jul 1;221(4605):23–29. doi: 10.1126/science.221.4605.23. [DOI] [PubMed] [Google Scholar]
  6. Bisbee C. A., Baker M. A., Wilson A. C., Haji-Azimi I., Fischberg M. Albumin phylogeny for clawed frogs (Xenopus). Science. 1977 Feb 25;195(4280):785–787. doi: 10.1126/science.65013. [DOI] [PubMed] [Google Scholar]
  7. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  8. Carr J. L., Shashikant C. S., Bailey W. J., Ruddle F. H. Molecular evolution of Hox gene regulation: cloning and transgenic analysis of the lamprey HoxQ8 gene. J Exp Zool. 1998 Jan 1;280(1):73–85. doi: 10.1002/(sici)1097-010x(19980101)280:1<73::aid-jez9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  9. Chen J., Ruley H. E. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem. 1998 Sep 18;273(38):24670–24675. doi: 10.1074/jbc.273.38.24670. [DOI] [PubMed] [Google Scholar]
  10. Clark A. G. Invasion and maintenance of a gene duplication. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2950–2954. doi: 10.1073/pnas.91.8.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
  12. Cooke J., Nowak M. A., Boerlijst M., Maynard-Smith J. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 1997 Sep;13(9):360–364. doi: 10.1016/s0168-9525(97)01233-x. [DOI] [PubMed] [Google Scholar]
  13. Duboule D., Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 1989 May;8(5):1497–1505. doi: 10.1002/j.1460-2075.1989.tb03534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dupé V., Davenne M., Brocard J., Dollé P., Mark M., Dierich A., Chambon P., Rijli F. M. In vivo functional analysis of the Hoxa-1 3' retinoic acid response element (3'RARE). Development. 1997 Jan;124(2):399–410. doi: 10.1242/dev.124.2.399. [DOI] [PubMed] [Google Scholar]
  15. Ekker M., Wegner J., Akimenko M. A., Westerfield M. Coordinate embryonic expression of three zebrafish engrailed genes. Development. 1992 Dec;116(4):1001–1010. doi: 10.1242/dev.116.4.1001. [DOI] [PubMed] [Google Scholar]
  16. Ekker S. C., Ungar A. R., Greenstein P., von Kessler D. P., Porter J. A., Moon R. T., Beachy P. A. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol. 1995 Aug 1;5(8):944–955. doi: 10.1016/s0960-9822(95)00185-0. [DOI] [PubMed] [Google Scholar]
  17. Ellies D. L., Stock D. W., Hatch G., Giroux G., Weiss K. M., Ekker M. Relationship between the genomic organization and the overlapping embryonic expression patterns of the zebrafish dlx genes. Genomics. 1997 Nov 1;45(3):580–590. doi: 10.1006/geno.1997.4978. [DOI] [PubMed] [Google Scholar]
  18. Ferris S. D., Whitt G. S. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol. 1979 Apr 12;12(4):267–317. doi: 10.1007/BF01732026. [DOI] [PubMed] [Google Scholar]
  19. Ferris S. D., Whitt G. S. Loss of duplicate gene expression after polyploidisation. Nature. 1977 Jan 20;265(5591):258–260. doi: 10.1038/265258a0. [DOI] [PubMed] [Google Scholar]
  20. Gardner C. A., Barald K. F. Expression patterns of engrailed-like proteins in the chick embryo. Dev Dyn. 1992 Apr;193(4):370–388. doi: 10.1002/aja.1001930410. [DOI] [PubMed] [Google Scholar]
  21. Gaut B. S., Doebley J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6809–6814. doi: 10.1073/pnas.94.13.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gavalas A., Studer M., Lumsden A., Rijli F. M., Krumlauf R., Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development. 1998 Mar;125(6):1123–1136. doi: 10.1242/dev.125.6.1123. [DOI] [PubMed] [Google Scholar]
  23. Goodman M. M., Stuber C. W., Newton K., Weissinger H. H. Linkage relationships of 19 enzyme Loci in maize. Genetics. 1980 Nov;96(3):697–710. doi: 10.1093/genetics/96.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Graf J. D., Kobel H. R. Genetics of Xenopus laevis. Methods Cell Biol. 1991;36:19–34. doi: 10.1016/s0091-679x(08)60270-8. [DOI] [PubMed] [Google Scholar]
  25. Grenier J. K., Garber T. L., Warren R., Whitington P. M., Carroll S. Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol. 1997 Aug 1;7(8):547–553. doi: 10.1016/s0960-9822(06)00253-3. [DOI] [PubMed] [Google Scholar]
  26. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Holland L. Z., Kene M., Williams N. A., Holland N. D. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development. 1997 May;124(9):1723–1732. doi: 10.1242/dev.124.9.1723. [DOI] [PubMed] [Google Scholar]
  28. Holland P. W., Garcia-Fernàndez J. Hox genes and chordate evolution. Dev Biol. 1996 Feb 1;173(2):382–395. doi: 10.1006/dbio.1996.0034. [DOI] [PubMed] [Google Scholar]
  29. Holland P. W., Garcia-Fernàndez J., Williams N. A., Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl. 1994:125–133. [PubMed] [Google Scholar]
  30. Hughes A. L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994 May 23;256(1346):119–124. doi: 10.1098/rspb.1994.0058. [DOI] [PubMed] [Google Scholar]
  31. Jack J. W. Molecular organization of the cut locus of Drosophila melanogaster. Cell. 1985 Oct;42(3):869–876. doi: 10.1016/0092-8674(85)90283-1. [DOI] [PubMed] [Google Scholar]
  32. Jack J., DeLotto Y. Structure and regulation of a complex locus: the cut gene of Drosophila. Genetics. 1995 Apr;139(4):1689–1700. doi: 10.1093/genetics/139.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Joyner A. L., Martin G. R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev. 1987 Mar;1(1):29–38. doi: 10.1101/gad.1.1.29. [DOI] [PubMed] [Google Scholar]
  34. Kappen C., Ruddle F. H. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev. 1993 Dec;3(6):931–938. doi: 10.1016/0959-437x(93)90016-i. [DOI] [PubMed] [Google Scholar]
  35. Kidwell M. G., Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7704–7711. doi: 10.1073/pnas.94.15.7704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kirchhamer C. V., Yuh C. H., Davidson E. H. Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9322–9328. doi: 10.1073/pnas.93.18.9322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  38. Langston A. W., Thompson J. R., Gudas L. J. Retinoic acid-responsive enhancers located 3' of the Hox A and Hox B homeobox gene clusters. Functional analysis. J Biol Chem. 1997 Jan 24;272(4):2167–2175. doi: 10.1074/jbc.272.4.2167. [DOI] [PubMed] [Google Scholar]
  39. Lee K. H., Xu Q., Breitbart R. E. A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev Biol. 1996 Dec 15;180(2):722–731. doi: 10.1006/dbio.1996.0341. [DOI] [PubMed] [Google Scholar]
  40. Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
  41. Li X., Noll M. Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature. 1994 Jan 6;367(6458):83–87. doi: 10.1038/367083a0. [DOI] [PubMed] [Google Scholar]
  42. Liu S., McLeod E., Jack J. Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila. Genetics. 1991 Jan;127(1):151–159. doi: 10.1093/genetics/127.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Logan C., Willard H. F., Rommens J. M., Joyner A. L. Chromosomal localization of the human homeo box-containing genes, EN1 and EN2. Genomics. 1989 Feb;4(2):206–209. doi: 10.1016/0888-7543(89)90301-7. [DOI] [PubMed] [Google Scholar]
  44. Lundin L. G. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics. 1993 Apr;16(1):1–19. doi: 10.1006/geno.1993.1133. [DOI] [PubMed] [Google Scholar]
  45. Maconochie M. K., Nonchev S., Studer M., Chan S. K., Pöpperl H., Sham M. H., Mann R. S., Krumlauf R. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 1997 Jul 15;11(14):1885–1895. doi: 10.1101/gad.11.14.1885. [DOI] [PubMed] [Google Scholar]
  46. Mena M., Ambrose B. A., Meeley R. B., Briggs S. P., Yanofsky M. F., Schmidt R. J. Diversification of C-function activity in maize flower development. Science. 1996 Nov 29;274(5292):1537–1540. doi: 10.1126/science.274.5292.1537. [DOI] [PubMed] [Google Scholar]
  47. Morizot D. C., Slaugenhaupt S. A., Kallman K. D., Chakravarti A. Genetic linkage map of fishes of the genus Xiphophorus (Teleostei: Poeciliidae). Genetics. 1991 Feb;127(2):399–410. doi: 10.1093/genetics/127.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nadeau J. H., Sankoff D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics. 1997 Nov;147(3):1259–1266. doi: 10.1093/genetics/147.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nadeau J. H., Sankoff D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics. 1997 Nov;147(3):1259–1266. doi: 10.1093/genetics/147.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
  51. Ozçelik T., Porteus M. H., Rubenstein J. L., Francke U. DLX2 (TES1), a homeobox gene of the Distal-less family, assigned to conserved regions on human and mouse chromosomes 2. Genomics. 1992 Aug;13(4):1157–1161. doi: 10.1016/0888-7543(92)90031-m. [DOI] [PubMed] [Google Scholar]
  52. Palopoli M. F., Patel N. H. Evolution of the interaction between Hox genes and a downstream target. Curr Biol. 1998 May 7;8(10):587–590. doi: 10.1016/s0960-9822(98)70228-3. [DOI] [PubMed] [Google Scholar]
  53. Pendleton J. W., Nagai B. K., Murtha M. T., Ruddle F. H. Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6300–6304. doi: 10.1073/pnas.90.13.6300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Piatigorsky J., Wistow G. The recruitment of crystallins: new functions precede gene duplication. Science. 1991 May 24;252(5009):1078–1079. doi: 10.1126/science.252.5009.1078. [DOI] [PubMed] [Google Scholar]
  55. Pickett F. B., Meeks-Wagner D. R. Seeing double: appreciating genetic redundancy. Plant Cell. 1995 Sep;7(9):1347–1356. doi: 10.1105/tpc.7.9.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Postlethwait J. H., Yan Y. L., Gates M. A., Horne S., Amores A., Brownlie A., Donovan A., Egan E. S., Force A., Gong Z. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998 Apr;18(4):345–349. doi: 10.1038/ng0498-345. [DOI] [PubMed] [Google Scholar]
  57. Pébusque M. J., Coulier F., Birnbaum D., Pontarotti P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol. 1998 Sep;15(9):1145–1159. doi: 10.1093/oxfordjournals.molbev.a026022. [DOI] [PubMed] [Google Scholar]
  58. Pöpperl H., Bienz M., Studer M., Chan S. K., Aparicio S., Brenner S., Mann R. S., Krumlauf R. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell. 1995 Jun 30;81(7):1031–1042. doi: 10.1016/s0092-8674(05)80008-x. [DOI] [PubMed] [Google Scholar]
  59. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  60. Seoighe C., Wolfe K. H. Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4447–4452. doi: 10.1073/pnas.95.8.4447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Shubin N., Tabin C., Carroll S. Fossils, genes and the evolution of animal limbs. Nature. 1997 Aug 14;388(6643):639–648. doi: 10.1038/41710. [DOI] [PubMed] [Google Scholar]
  62. Sidow A. Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev. 1996 Dec;6(6):715–722. doi: 10.1016/s0959-437x(96)80026-8. [DOI] [PubMed] [Google Scholar]
  63. Slusarski D. C., Motzny C. K., Holmgren R. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster. Genetics. 1995 Jan;139(1):229–240. doi: 10.1093/genetics/139.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Stock D. W., Ellies D. L., Zhao Z., Ekker M., Ruddle F. H., Weiss K. M. The evolution of the vertebrate Dlx gene family. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10858–10863. doi: 10.1073/pnas.93.20.10858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Studer M., Gavalas A., Marshall H., Ariza-McNaughton L., Rijli F. M., Chambon P., Krumlauf R. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development. 1998 Mar;125(6):1025–1036. doi: 10.1242/dev.125.6.1025. [DOI] [PubMed] [Google Scholar]
  66. Studer M., Lumsden A., Ariza-McNaughton L., Bradley A., Krumlauf R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature. 1996 Dec 19;384(6610):630–634. doi: 10.1038/384630a0. [DOI] [PubMed] [Google Scholar]
  67. Studer M., Pöpperl H., Marshall H., Kuroiwa A., Krumlauf R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science. 1994 Sep 16;265(5179):1728–1732. doi: 10.1126/science.7916164. [DOI] [PubMed] [Google Scholar]
  68. Takahata N., Maruyama T. Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4521–4525. doi: 10.1073/pnas.76.9.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Thisse C., Thisse B., Schilling T. F., Postlethwait J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development. 1993 Dec;119(4):1203–1215. doi: 10.1242/dev.119.4.1203. [DOI] [PubMed] [Google Scholar]
  70. Thompson J. R., Chen S. W., Ho L., Langston A. W., Gudas L. J. An evolutionary conserved element is essential for somite and adjacent mesenchymal expression of the Hoxa1 gene. Dev Dyn. 1998 Jan;211(1):97–108. doi: 10.1002/(SICI)1097-0177(199801)211:1<97::AID-AJA9>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  71. Walsh J. B. How often do duplicated genes evolve new functions? Genetics. 1995 Jan;139(1):421–428. doi: 10.1093/genetics/139.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Watterson G. A. On the time for gene silencing at duplicate Loci. Genetics. 1983 Nov;105(3):745–766. doi: 10.1093/genetics/105.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  74. White S. E., Habera L. F., Wessler S. R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11792–11796. doi: 10.1073/pnas.91.25.11792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. White S., Doebley J. Of genes and genomes and the origin of maize. Trends Genet. 1998 Aug;14(8):327–332. doi: 10.1016/s0168-9525(98)01524-8. [DOI] [PubMed] [Google Scholar]
  76. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wolfe K. H., Shields D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997 Jun 12;387(6634):708–713. doi: 10.1038/42711. [DOI] [PubMed] [Google Scholar]
  78. Zardoya R., Abouheif E., Meyer A. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13036–13041. doi: 10.1073/pnas.93.23.13036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Zhang J., Nei M. Evolution of Antennapedia-class homeobox genes. Genetics. 1996 Jan;142(1):295–303. doi: 10.1093/genetics/142.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Zhou Y. H., Li W. H. Gene conversion and natural selection in the evolution of X-linked color vision genes in higher primates. Mol Biol Evol. 1996 Jul;13(6):780–783. doi: 10.1093/oxfordjournals.molbev.a025638. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES