Abstract
A general fine-scale Bayesian quantitative trait locus (QTL) mapping method for outcrossing species is presented. It is suitable for an analysis of complete and incomplete data from experimental designs of F2 families or backcrosses. The amount of genotyping of parents and grandparents is optional, as well as the assumption that the QTL alleles in the crossed lines are fixed. Grandparental origin indicators are used, but without forgetting the original genotype or allelic origin information. The method treats the number of QTL in the analyzed chromosome as a random variable and allows some QTL effects from other chromosomes to be taken into account in a composite interval mapping manner. A block-update of ordered genotypes (haplotypes) of the whole family is sampled once in each marker locus during every round of the Markov Chain Monte Carlo algorithm used in the numerical estimation. As a byproduct, the method gives the posterior distributions for linkage phases in the family and therefore it can also be used as a haplotyping algorithm. The Bayesian method is tested and compared with two frequentist methods using simulated data sets, considering two different parental crosses and three different levels of available parental information. The method is implemented as a software package and is freely available under the name Multimapper/outbred at URL http://www.rni.helsinki.fi/mjs/.
Full Text
The Full Text of this article is available as a PDF (389.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeschele I., Uimari P., Grignola F. E., Zhang Q., Gage K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics. 1997 Nov;147(3):1445–1457. doi: 10.1093/genetics/147.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. A general Monte Carlo method for mapping multiple quantitative trait loci. Genetics. 1996 Jan;142(1):305–311. doi: 10.1093/genetics/142.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Johnson D. L., Van Arendonk J. A. A mixture model approach to the mapping of quantitative trait loci in complex populations with an application to multiple cattle families. Genetics. 1998 Jan;148(1):391–399. doi: 10.1093/genetics/148.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen C. S., Sheehan N. Problems with determination of noncommunicating classes for Monte Carlo Markov chain applications in pedigree analysis. Biometrics. 1998 Jun;54(2):416–425. [PubMed] [Google Scholar]
- Kao C. H., Zeng Z. B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics. 1997 Jun;53(2):653–665. [PubMed] [Google Scholar]
- Kruglyak L., Daly M. J., Lander E. S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am J Hum Genet. 1995 Feb;56(2):519–527. [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin S. A scheme for constructing an irreducible Markov chain for pedigree data. Biometrics. 1995 Mar;51(1):318–322. [PubMed] [Google Scholar]
- Lin S., Thompson E., Wijsman E. Finding noncommunicating sets for Markov chain Monte Carlo estimations on pedigrees. Am J Hum Genet. 1994 Apr;54(4):695–704. [PMC free article] [PubMed] [Google Scholar]
- Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheehan N., Thomas A. On the irreducibility of a Markov chain defined on a space of genotype configurations by a sampling scheme. Biometrics. 1993 Mar;49(1):163–175. [PubMed] [Google Scholar]
- Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobel E., Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996 Jun;58(6):1323–1337. [PMC free article] [PubMed] [Google Scholar]
- Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wijsman E. M. A deductive method of haplotype analysis in pedigrees. Am J Hum Genet. 1987 Sep;41(3):356–373. [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]