Skip to main content
Genetics logoLink to Genetics
. 1999 May;152(1):167–178. doi: 10.1093/genetics/152.1.167

Topoisomerase I is essential in Cryptococcus neoformans: role In pathobiology and as an antifungal target.

M Del Poeta 1, D L Toffaletti 1, T H Rude 1, C C Dykstra 1, J Heitman 1, J R Perfect 1
PMCID: PMC1460578  PMID: 10224251

Abstract

Topisomerase I is the target of several toxins and chemotherapy agents, and the enzyme is essential for viability in some organisms, including mice and drosophila. We have cloned the TOP1 gene encoding topoisomerase I from the opportunistic fungal pathogen Cryptococcus neoformans. The C. neoformans topoisomerase I contains a fungal insert also found in topoisomerase I from Candida albicans and Saccharomyces cerevisiae that is not present in the mammalian enzyme. We were unable to disrupt the topoisomerase I gene in this haploid organism by homologous recombination in over 8000 transformants analyzed. When a second functional copy of the TOP1 gene was introduced into the genome, the topoisomerase I gene could be readily disrupted by homologous recombination (at 7% efficiency). Thus, topoisomerase I is essential in C. neoformans. This new molecular strategy with C. neoformans may also be useful in identifying essential genes in other pathogenic fungi. To address the physiological and pathobiological functions of the enzyme, the TOP1 gene was fused to the GAL7 gene promoter. The resulting GAL7::TOP1 fusion gene was modestly regulated by carbon source in a serotype A strain of C. neoformans. Modest overexpression of topoisomerase I conferred sensitivity to heat shock, gamma-rays, and camptothecin. In contrast, alterations in topoisomerase I levels had no effect on the toxicity of a novel class of antifungal agents, the dicationic aromatic compounds (DACs), indicating that topoisomerase I is not the target of DACs. In an animal model of cryptococcal meningitis, topoisomerase I regulation was not critically important to established infection, but may impact on the initial stress response to infection. In summary, our studies reveal that topoisomerase I is essential in the human pathogen C. neoformans and represents a novel target for antifungal agents.

Full Text

The Full Text of this article is available as a PDF (462.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alspaugh J. A., Perfect J. R., Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev. 1997 Dec 1;11(23):3206–3217. doi: 10.1101/gad.11.23.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armengou A., Porcar C., Mascaró J., García-Bragado F. Possible development of resistance to fluconazole during suppressive therapy for AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1996 Dec;23(6):1337–1338. doi: 10.1093/clinids/23.6.1337-a. [DOI] [PubMed] [Google Scholar]
  3. Berg J., Clancy C. J., Nguyen M. H. The hidden danger of primary fluconazole prophylaxis for patients with AIDS. Clin Infect Dis. 1998 Jan;26(1):186–187. doi: 10.1086/517056. [DOI] [PubMed] [Google Scholar]
  4. Brill S. J., DiNardo S., Voelkel-Meiman K., Sternglanz R. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. 1987 Mar 26-Apr 1Nature. 326(6111):414–416. doi: 10.1038/326414a0. [DOI] [PubMed] [Google Scholar]
  5. Bronstein I. B., Vorobyev S., Timofeev A., Jolles C. J., Alder S. L., Holden J. A. Elevations of DNA topoisomerase I catalytic activity and immunoprotein in human malignancies. Oncol Res. 1996;8(1):17–25. [PubMed] [Google Scholar]
  6. Christman M. F., Dietrich F. S., Fink G. R. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell. 1988 Nov 4;55(3):413–425. doi: 10.1016/0092-8674(88)90027-x. [DOI] [PubMed] [Google Scholar]
  7. Cox G. M., Rude T. H., Dykstra C. C., Perfect J. R. The actin gene from Cryptococcus neoformans: structure and phylogenetic analysis. J Med Vet Mycol. 1995 Jul-Aug;33(4):261–266. doi: 10.1080/02681219580000521. [DOI] [PubMed] [Google Scholar]
  8. Del Poeta M., Schell W. A., Dykstra C. C., Jones S. K., Tidwell R. R., Kumar A., Boykin D. W., Perfect J. R. In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles. Antimicrob Agents Chemother. 1998 Oct;42(10):2503–2510. doi: 10.1128/aac.42.10.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Del Poeta M., Schell W. A., Dykstra C. C., Jones S., Tidwell R. R., Czarny A., Bajic M., Kumar A., Boykin D., Perfect J. R. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob Agents Chemother. 1998 Oct;42(10):2495–2502. doi: 10.1128/aac.42.10.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dykstra C. C., McClernon D. R., Elwell L. P., Tidwell R. R. Selective inhibition of topoisomerases from Pneumocystis carinii compared with that of topoisomerases from mammalian cells. Antimicrob Agents Chemother. 1994 Sep;38(9):1890–1898. doi: 10.1128/aac.38.9.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dykstra C. C., Tidwell R. R. Inhibition of topoisomerases from Pneumocystis carinii by aromatic dicationic molecules. J Protozool. 1991 Nov-Dec;38(6):78S–81S. [PubMed] [Google Scholar]
  12. Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fostel J. M., Montgomery D. A., Shen L. L. Characterization of DNA topoisomerase I from Candida albicans as a target for drug discovery. Antimicrob Agents Chemother. 1992 Oct;36(10):2131–2138. doi: 10.1128/aac.36.10.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fostel J., Montgomery D. Identification of the aminocatechol A-3253 as an in vitro poison of DNA topoisomerase I from Candida albicans. Antimicrob Agents Chemother. 1995 Mar;39(3):586–592. doi: 10.1128/AAC.39.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fostel J., Montgomery D., Lartey P. Comparison of responses of DNA topoisomerase I from Candida albicans and human cells to four new agents which stimulate topoisomerase-dependent DNA nicking. FEMS Microbiol Lett. 1996 May 1;138(2-3):105–111. doi: 10.1111/j.1574-6968.1996.tb08142.x. [DOI] [PubMed] [Google Scholar]
  16. Gerhold D., Thiyagarajan M., Kmiec E. B. The topoisomerase I gene from Ustilago maydis: sequence, disruption and mutant phenotype. Nucleic Acids Res. 1994 Sep 11;22(18):3773–3778. doi: 10.1093/nar/22.18.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goto T., Wang J. C. Cloning of yeast TOP1, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7178–7182. doi: 10.1073/pnas.82.21.7178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holm C., Stearns T., Botstein D. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol. 1989 Jan;9(1):159–168. doi: 10.1128/mcb.9.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Husain I., Mohler J. L., Seigler H. F., Besterman J. M. Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res. 1994 Jan 15;54(2):539–546. [PubMed] [Google Scholar]
  20. Ishida R., Hamatake M., Wasserman R. A., Nitiss J. L., Wang J. C., Andoh T. DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res. 1995 Jun 1;55(11):2299–2303. [PubMed] [Google Scholar]
  21. Jiang W., Gerhold D., Kmiec E. B., Hauser M., Becker J. M., Koltin Y. The topoisomerase I gene from Candida albicans. Microbiology. 1997 Feb;143(Pt 2):377–386. doi: 10.1099/00221287-143-2-377. [DOI] [PubMed] [Google Scholar]
  22. Kelly S. L., Lamb D. C., Taylor M., Corran A. J., Baldwin B. C., Powderly W. G. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994 Sep 15;122(1-2):39–42. doi: 10.1111/j.1574-6968.1994.tb07140.x. [DOI] [PubMed] [Google Scholar]
  23. Kroeger P. E., Rowe T. C. Interaction of topoisomerase 1 with the transcribed region of the Drosophila HSP 70 heat shock gene. Nucleic Acids Res. 1989 Nov 11;17(21):8495–8509. doi: 10.1093/nar/17.21.8495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lodge J. K., Jackson-Machelski E., Toffaletti D. L., Perfect J. R., Gordon J. I. Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12008–12012. doi: 10.1073/pnas.91.25.12008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell T. G., Perfect J. R. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995 Oct;8(4):515–548. doi: 10.1128/cmr.8.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morham S. G., Kluckman K. D., Voulomanos N., Smithies O. Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol. 1996 Dec;16(12):6804–6809. doi: 10.1128/mcb.16.12.6804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nitiss J. L., Rose A., Sykes K. C., Harris J., Zhou J. Using yeast to understand drugs that target topoisomerases. Ann N Y Acad Sci. 1996 Dec 13;803:32–43. doi: 10.1111/j.1749-6632.1996.tb26374.x. [DOI] [PubMed] [Google Scholar]
  28. Odom A., Muir S., Lim E., Toffaletti D. L., Perfect J., Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 1997 May 15;16(10):2576–2589. doi: 10.1093/emboj/16.10.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paugam A., Dupouy-Camet J., Blanche P., Gangneux J. P., Tourte-Schaefer C., Sicard D. Increased fluconazole resistance of Cryptococcus neoformans isolated from a patient with AIDS and recurrent meningitis. Clin Infect Dis. 1994 Nov;19(5):975–976. doi: 10.1093/clinids/19.5.975-a. [DOI] [PubMed] [Google Scholar]
  30. Perfect J. R. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother. 1996 Jul;40(7):1577–1583. doi: 10.1128/aac.40.7.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Perfect J. R., Ketabchi N., Cox G. M., Ingram C. W., Beiser C. L. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol. 1993 Dec;31(12):3305–3309. doi: 10.1128/jcm.31.12.3305-3309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Powderly W. G. Cryptococcal meningitis and AIDS. Clin Infect Dis. 1993 Nov;17(5):837–842. doi: 10.1093/clinids/17.5.837. [DOI] [PubMed] [Google Scholar]
  33. Redinbo M. R., Stewart L., Kuhn P., Champoux J. J., Hol W. G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 1998 Mar 6;279(5356):1504–1513. doi: 10.1126/science.279.5356.1504. [DOI] [PubMed] [Google Scholar]
  34. Rose D., Thomas W., Holm C. Segregation of recombined chromosomes in meiosis I requires DNA topoisomerase II. Cell. 1990 Mar 23;60(6):1009–1017. doi: 10.1016/0092-8674(90)90349-j. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shen L. L., Baranowski J., Fostel J., Montgomery D. A., Lartey P. A. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs. Antimicrob Agents Chemother. 1992 Dec;36(12):2778–2784. doi: 10.1128/aac.36.12.2778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stewart L., Redinbo M. R., Qiu X., Hol W. G., Champoux J. J. A model for the mechanism of human topoisomerase I. Science. 1998 Mar 6;279(5356):1534–1541. doi: 10.1126/science.279.5356.1534. [DOI] [PubMed] [Google Scholar]
  38. Taylor A., Giles K., Sarthy A. V., McGonigal T., Fostel J. Identification of the gene encoding DNA topoisomerase I from Candida albicans. FEMS Microbiol Lett. 1996 May 1;138(2-3):113–121. doi: 10.1111/j.1574-6968.1996.tb08143.x. [DOI] [PubMed] [Google Scholar]
  39. Thompson J. R., Douglas C. M., Li W., Jue C. K., Pramanik B., Yuan X., Rude T. H., Toffaletti D. L., Perfect J. R., Kurtz M. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol. 1999 Jan;181(2):444–453. doi: 10.1128/jb.181.2.444-453.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thrash C., Bankier A. T., Barrell B. G., Sternglanz R. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4374–4378. doi: 10.1073/pnas.82.13.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol. 1993 Mar;175(5):1405–1411. doi: 10.1128/jb.175.5.1405-1411.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tsao Y. P., Wu H. Y., Liu L. F. Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell. 1989 Jan 13;56(1):111–118. doi: 10.1016/0092-8674(89)90989-6. [DOI] [PubMed] [Google Scholar]
  43. Uemura T., Morino K., Uzawa S., Shiozaki K., Yanagida M. Cloning and sequencing of Schizosaccharomyces pombe DNA topoisomerase I gene, and effect of gene disruption. Nucleic Acids Res. 1987 Dec 10;15(23):9727–9739. doi: 10.1093/nar/15.23.9727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White M., Cirrincione C., Blevins A., Armstrong D. Cryptococcal meningitis: outcome in patients with AIDS and patients with neoplastic disease. J Infect Dis. 1992 May;165(5):960–963. doi: 10.1093/infdis/165.5.960. [DOI] [PubMed] [Google Scholar]
  45. Wickes B. L., Edman J. C. The Cryptococcus neoformans GAL7 gene and its use as an inducible promoter. Mol Microbiol. 1995 Jun;16(6):1099–1109. doi: 10.1111/j.1365-2958.1995.tb02335.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES