Abstract
We have initiated an analysis of protein kinase A (PKA) in Drosophila using transgenic techniques to modulate PKA activity in specific tissues during development. We have constructed GAL4/UAS-regulated transgenes in active and mutant forms that encode PKAc, the catalytic subunit of PKA, and PKI(1-31), a competitive inhibitor of PKAc. We present evidence that the wild-type transgenes are active and summarize the phenotypes produced by a number of GAL4 enhancer-detector strains. We compare the effects of transgenes encoding PKI(1-31) with those encoding PKAr*, a mutant regulatory subunit that constitutively inhibits PKAc because of its inability to bind cyclic AMP. Both inhibitors block larval growth, but only PKAr* alters pattern formation by activating the Hedgehog signaling pathway. Therefore, transgenic PKI(1-31) should provide a tool to investigate the role of PKAc in larval growth regulation without concomitant changes in pattern formation. The different effects of PKI(1-31) and PKAr* suggest two distinct roles, cytoplasmic and nuclear, for PKAc in Hedgehog signal transduction. Alternatively, PKAr* may target proteins other than PKAc, suggesting a role for free PKAr in signal transduction, a role inhibited by PKAc in reversal of the classical relationship of these subunits.
Full Text
The Full Text of this article is available as a PDF (314.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aza-Blanc P., Ramírez-Weber F. A., Laget M. P., Schwartz C., Kornberg T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell. 1997 Jun 27;89(7):1043–1053. doi: 10.1016/s0092-8674(00)80292-5. [DOI] [PubMed] [Google Scholar]
- Bellen H. J., Gregory B. K., Olsson C. L., Kiger J. A., Jr Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Dev Biol. 1987 Jun;121(2):432–444. doi: 10.1016/0012-1606(87)90180-1. [DOI] [PubMed] [Google Scholar]
- Bellen H. J., Kiger J. A., Jr Sexual hyperactivity and reduced longevity of dunce females of Drosophila melanogaster. Genetics. 1987 Jan;115(1):153–160. doi: 10.1093/genetics/115.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton J. S., Edgar B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development. 1998 Jun;125(11):2149–2158. doi: 10.1242/dev.125.11.2149. [DOI] [PubMed] [Google Scholar]
- Byers D., Davis R. L., Kiger J. A., Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature. 1981 Jan 1;289(5793):79–81. doi: 10.1038/289079a0. [DOI] [PubMed] [Google Scholar]
- Chen Y., Gallaher N., Goodman R. H., Smolik S. M. Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2349–2354. doi: 10.1073/pnas.95.5.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couso J. P., Bishop S. A., Martinez Arias A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development. 1994 Mar;120(3):621–636. doi: 10.1242/dev.120.3.621. [DOI] [PubMed] [Google Scholar]
- Drain P., Folkers E., Quinn W. G. cAMP-dependent protein kinase and the disruption of learning in transgenic flies. Neuron. 1991 Jan;6(1):71–82. doi: 10.1016/0896-6273(91)90123-h. [DOI] [PubMed] [Google Scholar]
- Feany M. B. Rescue of the learning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2795–2799. doi: 10.1073/pnas.87.7.2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grove J. R., Price D. J., Goodman H. M., Avruch J. Recombinant fragment of protein kinase inhibitor blocks cyclic AMP-dependent gene transcription. Science. 1987 Oct 23;238(4826):530–533. doi: 10.1126/science.2821622. [DOI] [PubMed] [Google Scholar]
- Guo H. F., The I., Hannan F., Bernards A., Zhong Y. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science. 1997 May 2;276(5313):795–798. doi: 10.1126/science.276.5313.795. [DOI] [PubMed] [Google Scholar]
- Harootunian A. T., Adams S. R., Wen W., Meinkoth J. L., Taylor S. S., Tsien R. Y. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. Mol Biol Cell. 1993 Oct;4(10):993–1002. doi: 10.1091/mbc.4.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herberg F. W., Taylor S. S. Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions. Biochemistry. 1993 Dec 21;32(50):14015–14022. doi: 10.1021/bi00213a035. [DOI] [PubMed] [Google Scholar]
- Jiang J., Struhl G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell. 1995 Feb 24;80(4):563–572. doi: 10.1016/0092-8674(95)90510-3. [DOI] [PubMed] [Google Scholar]
- Knighton D. R., Zheng J. H., Ten Eyck L. F., Xuong N. H., Taylor S. S., Sowadski J. M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):414–420. doi: 10.1126/science.1862343. [DOI] [PubMed] [Google Scholar]
- Lane M. E., Kalderon D. Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes Dev. 1993 Jul;7(7A):1229–1243. doi: 10.1101/gad.7.7a.1229. [DOI] [PubMed] [Google Scholar]
- Lepage T., Cohen S. M., Diaz-Benjumea F. J., Parkhurst S. M. Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature. 1995 Feb 23;373(6516):711–715. doi: 10.1038/373711a0. [DOI] [PubMed] [Google Scholar]
- Lew J., Coruh N., Tsigelny I., Garrod S., Taylor S. S. Synergistic binding of nucleotides and inhibitors to cAMP-dependent protein kinase examined by acrylodan fluorescence spectroscopy. J Biol Chem. 1997 Jan 17;272(3):1507–1513. doi: 10.1074/jbc.272.3.1507. [DOI] [PubMed] [Google Scholar]
- Li W., Ohlmeyer J. T., Lane M. E., Kalderon D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell. 1995 Feb 24;80(4):553–562. doi: 10.1016/0092-8674(95)90509-x. [DOI] [PubMed] [Google Scholar]
- Misra S., Rio D. C. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell. 1990 Jul 27;62(2):269–284. doi: 10.1016/0092-8674(90)90365-l. [DOI] [PubMed] [Google Scholar]
- Noordermeer J., Johnston P., Rijsewijk F., Nusse R., Lawrence P. A. The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo. Development. 1992 Nov;116(3):711–719. doi: 10.1242/dev.116.3.711. [DOI] [PubMed] [Google Scholar]
- Ohlmeyer J. T., Kalderon D. Dual pathways for induction of wingless expression by protein kinase A and Hedgehog in Drosophila embryos. Genes Dev. 1997 Sep 1;11(17):2250–2258. doi: 10.1101/gad.11.17.2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan D., Rubin G. M. cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell. 1995 Feb 24;80(4):543–552. doi: 10.1016/0092-8674(95)90508-1. [DOI] [PubMed] [Google Scholar]
- Patel N. H. Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol. 1994;44:445–487. doi: 10.1016/s0091-679x(08)60927-9. [DOI] [PubMed] [Google Scholar]
- Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
- Shaulsky G., Fuller D., Loomis W. F. A cAMP-phosphodiesterase controls PKA-dependent differentiation. Development. 1998 Feb;125(4):691–699. doi: 10.1242/dev.125.4.691. [DOI] [PubMed] [Google Scholar]
- Skoulakis E. M., Kalderon D., Davis R. L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron. 1993 Aug;11(2):197–208. doi: 10.1016/0896-6273(93)90178-t. [DOI] [PubMed] [Google Scholar]
- Strutt D. I., Wiersdorff V., Mlodzik M. Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature. 1995 Feb 23;373(6516):705–709. doi: 10.1038/373705a0. [DOI] [PubMed] [Google Scholar]
- Taylor S. S., Buechler J. A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990;59:971–1005. doi: 10.1146/annurev.bi.59.070190.004543. [DOI] [PubMed] [Google Scholar]
- The I., Hannigan G. E., Cowley G. S., Reginald S., Zhong Y., Gusella J. F., Hariharan I. K., Bernards A. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science. 1997 May 2;276(5313):791–794. doi: 10.1126/science.276.5313.791. [DOI] [PubMed] [Google Scholar]
- Wolfgang W. J., Roberts I. J., Quan F., O'Kane C., Forte M. Activation of protein kinase A-independent pathways by Gs alpha in Drosophila. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14542–14547. doi: 10.1073/pnas.93.25.14542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh E., Gustafson K., Boulianne G. L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7036–7040. doi: 10.1073/pnas.92.15.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]