Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1513–1529. doi: 10.1093/genetics/152.4.1513

Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

L K Lewis 1, J W Westmoreland 1, M A Resnick 1
PMCID: PMC1460701  PMID: 10430580

Abstract

Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development.

Full Text

The Full Text of this article is available as a PDF (348.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aström S. U., Okamura S. M., Rine J. Yeast cell-type regulation of DNA repair. Nature. 1999 Jan 28;397(6717):310–310. doi: 10.1038/16833. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Symington L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996 Aug 15;10(16):2025–2037. doi: 10.1101/gad.10.16.2025. [DOI] [PubMed] [Google Scholar]
  3. Barford J. P., Hall R. J. Estimation of the length of cell cycle phases from asynchronous cultures of Saccharomyces cerevisiae. Exp Cell Res. 1976 Oct 15;102(2):276–284. doi: 10.1016/0014-4827(76)90043-4. [DOI] [PubMed] [Google Scholar]
  4. Barnes G., Rine J. Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1354–1358. doi: 10.1073/pnas.82.5.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnes G., Rio D. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):867–872. doi: 10.1073/pnas.94.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennett C. B., Westmoreland T. J., Snipe J. R., Resnick M. A. A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality. Mol Cell Biol. 1996 Aug;16(8):4414–4425. doi: 10.1128/mcb.16.8.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Benson F. E., Baumann P., West S. C. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature. 1998 Jan 22;391(6665):401–404. doi: 10.1038/34937. [DOI] [PubMed] [Google Scholar]
  10. Bezzubova O., Silbergleit A., Yamaguchi-Iwai Y., Takeda S., Buerstedde J. M. Reduced X-ray resistance and homologous recombination frequencies in a RAD54-/- mutant of the chicken DT40 cell line. Cell. 1997 Apr 18;89(2):185–193. doi: 10.1016/s0092-8674(00)80198-1. [DOI] [PubMed] [Google Scholar]
  11. Boulton S. J., Jackson S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 1996 Sep 16;15(18):5093–5103. [PMC free article] [PubMed] [Google Scholar]
  12. Brunborg G., Resnick M. A., Williamson D. H. Cell-cycle-specific repair of DNA double strand breaks in Saccharomyces cerevisiae. Radiat Res. 1980 Jun;82(3):547–558. [PubMed] [Google Scholar]
  13. Bryant P. E., Johnston P. J. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells. Mutat Res. 1993 May;299(3-4):289–296. doi: 10.1016/0165-1218(93)90105-m. [DOI] [PubMed] [Google Scholar]
  14. Buchhop S., Gibson M. K., Wang X. W., Wagner P., Stürzbecher H. W., Harris C. C. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 1997 Oct 1;25(19):3868–3874. doi: 10.1093/nar/25.19.3868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Carroll D., Lehman C. W., Jeong-Yu S., Dohrmann P., Dawson R. J., Trautman J. K. Distribution of exchanges upon homologous recombination of exogenous DNA in Xenopus laevis oocytes. Genetics. 1994 Oct;138(2):445–457. doi: 10.1093/genetics/138.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cary R. B., Peterson S. R., Wang J., Bear D. G., Bradbury E. M., Chen D. J. DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4267–4272. doi: 10.1073/pnas.94.9.4267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chanet R., Heude M., Adjiri A., Maloisel L., Fabre F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol. 1996 Sep;16(9):4782–4789. doi: 10.1128/mcb.16.9.4782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chu G. Double strand break repair. J Biol Chem. 1997 Sep 26;272(39):24097–24100. doi: 10.1074/jbc.272.39.24097. [DOI] [PubMed] [Google Scholar]
  19. Clever B., Interthal H., Schmuckli-Maurer J., King J., Sigrist M., Heyer W. D. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 1997 May 1;16(9):2535–2544. doi: 10.1093/emboj/16.9.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dolganov G. M., Maser R. S., Novikov A., Tosto L., Chong S., Bressan D. A., Petrini J. H. Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol. 1996 Sep;16(9):4832–4841. doi: 10.1128/mcb.16.9.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Elias-Arnanz M., Firmenich A. A., Berg P. Saccharomyces cerevisiae mutants defective in plasmid-chromosome recombination. Mol Gen Genet. 1996 Oct 16;252(5):530–538. doi: 10.1007/BF02172399. [DOI] [PubMed] [Google Scholar]
  22. Essers J., Hendriks R. W., Swagemakers S. M., Troelstra C., de Wit J., Bootsma D., Hoeijmakers J. H., Kanaar R. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell. 1997 Apr 18;89(2):195–204. doi: 10.1016/s0092-8674(00)80199-3. [DOI] [PubMed] [Google Scholar]
  23. Feldmann H., Winnacker E. L. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem. 1993 Jun 15;268(17):12895–12900. [PubMed] [Google Scholar]
  24. Fingerhut R., Kiefer J., Otto F. Cell cycle parameters in radiation sensitive strains of Saccharomyces cerevisiae. Mol Gen Genet. 1984;193(1):192–194. doi: 10.1007/BF00327437. [DOI] [PubMed] [Google Scholar]
  25. Fiorentini P., Huang K. N., Tishkoff D. X., Kolodner R. D., Symington L. S. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol. 1997 May;17(5):2764–2773. doi: 10.1128/mcb.17.5.2764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Firmenich A. A., Elias-Arnanz M., Berg P. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol Cell Biol. 1995 Mar;15(3):1620–1631. doi: 10.1128/mcb.15.3.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Frankenberg-Schwager M., Frankenberg D. DNA double-strand breaks: their repair and relationship to cell killing in yeast. Int J Radiat Biol. 1990 Oct;58(4):569–575. doi: 10.1080/09553009014551931. [DOI] [PubMed] [Google Scholar]
  28. Freudenreich C. H., Kantrow S. M., Zakian V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998 Feb 6;279(5352):853–856. doi: 10.1126/science.279.5352.853. [DOI] [PubMed] [Google Scholar]
  29. Game J. C. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin Cancer Biol. 1993 Apr;4(2):73–83. [PubMed] [Google Scholar]
  30. Getts R. C., Stamato T. D. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J Biol Chem. 1994 Jun 10;269(23):15981–15984. [PubMed] [Google Scholar]
  31. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  32. Godwin A. R., Bollag R. J., Christie D. M., Liskay R. M. Spontaneous and restriction enzyme-induced chromosomal recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12554–12558. doi: 10.1073/pnas.91.26.12554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Golub E. I., Kovalenko O. V., Gupta R. C., Ward D. C., Radding C. M. Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acids Res. 1997 Oct 15;25(20):4106–4110. doi: 10.1093/nar/25.20.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gordenin D. A., Resnick M. A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res. 1998 May 25;400(1-2):45–58. doi: 10.1016/s0027-5107(98)00047-5. [DOI] [PubMed] [Google Scholar]
  35. Haber J. E. Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet. 1992 Dec;8(12):446–452. doi: 10.1016/0168-9525(92)90329-3. [DOI] [PubMed] [Google Scholar]
  36. Habraken Y., Sung P., Prakash L., Prakash S. Holliday junction cleavage by yeast Rad1 protein. Nature. 1994 Oct 6;371(6497):531–534. doi: 10.1038/371531a0. [DOI] [PubMed] [Google Scholar]
  37. Halbrook J., Hoekstra M. F. Mutations in the Saccharomyces cerevisiae CDC1 gene affect double-strand-break-induced intrachromosomal recombination. Mol Cell Biol. 1994 Dec;14(12):8037–8050. doi: 10.1128/mcb.14.12.8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hanna D. E., Rethinaswamy A., Glover C. V. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 27;270(43):25905–25914. doi: 10.1074/jbc.270.43.25905. [DOI] [PubMed] [Google Scholar]
  39. Hays S. L., Firmenich A. A., Berg P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6925–6929. doi: 10.1073/pnas.92.15.6925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Holm C., Goto T., Wang J. C., Botstein D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 1985 Jun;41(2):553–563. doi: 10.1016/s0092-8674(85)80028-3. [DOI] [PubMed] [Google Scholar]
  41. Hovland P., Flick J., Johnston M., Sclafani R. A. Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose. Gene. 1989 Nov 15;83(1):57–64. doi: 10.1016/0378-1119(89)90403-4. [DOI] [PubMed] [Google Scholar]
  42. Jeggo P. A., Taccioli G. E., Jackson S. P. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays. 1995 Nov;17(11):949–957. doi: 10.1002/bies.950171108. [DOI] [PubMed] [Google Scholar]
  43. Johzuka K., Ogawa H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics. 1995 Apr;139(4):1521–1532. doi: 10.1093/genetics/139.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kanaar R., Troelstra C., Swagemakers S. M., Essers J., Smit B., Franssen J. H., Pastink A., Bezzubova O. Y., Buerstedde J. M., Clever B. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr Biol. 1996 Jul 1;6(7):828–838. doi: 10.1016/s0960-9822(02)00606-1. [DOI] [PubMed] [Google Scholar]
  45. Keeney S., Giroux C. N., Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997 Feb 7;88(3):375–384. doi: 10.1016/s0092-8674(00)81876-0. [DOI] [PubMed] [Google Scholar]
  46. Kironmai K. M., Muniyappa K. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells. 1997 Jul;2(7):443–455. doi: 10.1046/j.1365-2443.1997.1330331.x. [DOI] [PubMed] [Google Scholar]
  47. Lee S. E., Moore J. K., Holmes A., Umezu K., Kolodner R. D., Haber J. E. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998 Aug 7;94(3):399–409. doi: 10.1016/s0092-8674(00)81482-8. [DOI] [PubMed] [Google Scholar]
  48. Lewis L. K., Kirchner J. M., Resnick M. A. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol Cell Biol. 1998 Apr;18(4):1891–1902. doi: 10.1128/mcb.18.4.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Liang F., Han M., Romanienko P. J., Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5172–5177. doi: 10.1073/pnas.95.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lim D. S., Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol. 1996 Dec;16(12):7133–7143. doi: 10.1128/mcb.16.12.7133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Liu J., Wu T. C., Lichten M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 1995 Sep 15;14(18):4599–4608. doi: 10.1002/j.1460-2075.1995.tb00139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Maga J. A., McClanahan T. A., McEntee K. Transcriptional regulation of DNA damage responsive (DDR) genes in different rad mutant strains of Saccharomyces cerevisiae. Mol Gen Genet. 1986 Nov;205(2):276–284. doi: 10.1007/BF00430439. [DOI] [PubMed] [Google Scholar]
  53. Malkova A., Ivanov E. L., Haber J. E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7131–7136. doi: 10.1073/pnas.93.14.7131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. McKee R. H., Lawrence C. W. Genetic analysis of gamma-ray mutagenesis in yeast. III. Double-mutant strains. Mutat Res. 1980 Mar;70(1):37–48. doi: 10.1016/0027-5107(80)90056-1. [DOI] [PubMed] [Google Scholar]
  55. Milne G. T., Ho T., Weaver D. T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics. 1995 Mar;139(3):1189–1199. doi: 10.1093/genetics/139.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Mizuta R., LaSalle J. M., Cheng H. L., Shinohara A., Ogawa H., Copeland N., Jenkins N. A., Lalande M., Alt F. W. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6927–6932. doi: 10.1073/pnas.94.13.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Nag D. K., Kurst A. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics. 1997 Jul;146(3):835–847. doi: 10.1093/genetics/146.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nelms B. E., Maser R. S., MacKay J. F., Lagally M. G., Petrini J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science. 1998 Apr 24;280(5363):590–592. doi: 10.1126/science.280.5363.590. [DOI] [PubMed] [Google Scholar]
  59. Nelson W. G., Kastan M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994 Mar;14(3):1815–1823. doi: 10.1128/mcb.14.3.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. New J. H., Sugiyama T., Zaitseva E., Kowalczykowski S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature. 1998 Jan 22;391(6665):407–410. doi: 10.1038/34950. [DOI] [PubMed] [Google Scholar]
  61. Niederacher D., Entian K. D. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur J Biochem. 1991 Sep 1;200(2):311–319. doi: 10.1111/j.1432-1033.1991.tb16187.x. [DOI] [PubMed] [Google Scholar]
  62. Obe G., Johannes C., Schulte-Frohlinde D. DNA double-strand breaks induced by sparsely ionizing radiation and endonucleases as critical lesions for cell death, chromosomal aberrations, mutations and oncogenic transformation. Mutagenesis. 1992 Jan;7(1):3–12. doi: 10.1093/mutage/7.1.3. [DOI] [PubMed] [Google Scholar]
  63. Plessis A., Perrin A., Haber J. E., Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics. 1992 Mar;130(3):451–460. doi: 10.1093/genetics/130.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Porter S. E., Greenwell P. W., Ritchie K. B., Petes T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 1996 Feb 15;24(4):582–585. doi: 10.1093/nar/24.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Price E. A., Bourne S. L., Radbourne R., Lawton P. A., Lamerdin J., Thompson L. H., Arrand J. E. Rare microsatellite polymorphisms in the DNA repair genes XRCC1, XRCC3 and XRCC5 associated with cancer in patients of varying radiosensitivity. Somat Cell Mol Genet. 1997 Jul;23(4):237–247. doi: 10.1007/BF02674415. [DOI] [PubMed] [Google Scholar]
  66. Pâques F., Haber J. E. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Nov;17(11):6765–6771. doi: 10.1128/mcb.17.11.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Ramsden D. A., Gellert M. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev. 1995 Oct 1;9(19):2409–2420. doi: 10.1101/gad.9.19.2409. [DOI] [PubMed] [Google Scholar]
  68. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  69. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  70. Rodriguez K., Wang Z., Friedberg E. C., Tomkinson A. E. Identification of functional domains within the RAD1.RAD10 repair and recombination endonuclease of Saccharomyces cerevisiae. J Biol Chem. 1996 Aug 23;271(34):20551–20558. doi: 10.1074/jbc.271.34.20551. [DOI] [PubMed] [Google Scholar]
  71. Schiestl R. H., Zhu J., Petes T. D. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jul;14(7):4493–4500. doi: 10.1128/mcb.14.7.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schild D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics. 1995 May;140(1):115–127. doi: 10.1093/genetics/140.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Schär P., Herrmann G., Daly G., Lindahl T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 1997 Aug 1;11(15):1912–1924. doi: 10.1101/gad.11.15.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Seigneur M., Bidnenko V., Ehrlich S. D., Michel B. RuvAB acts at arrested replication forks. Cell. 1998 Oct 30;95(3):419–430. doi: 10.1016/s0092-8674(00)81772-9. [DOI] [PubMed] [Google Scholar]
  75. Sharples G. J., Leach D. R. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol. 1995 Sep;17(6):1215–1217. doi: 10.1111/j.1365-2958.1995.mmi_17061215_1.x. [DOI] [PubMed] [Google Scholar]
  76. Shen Z., Cloud K. G., Chen D. J., Park M. S. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem. 1996 Jan 5;271(1):148–152. doi: 10.1074/jbc.271.1.148. [DOI] [PubMed] [Google Scholar]
  77. Shen Z., Pardington-Purtymun P. E., Comeaux J. C., Moyzis R. K., Chen D. J. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics. 1996 Oct 15;37(2):183–186. doi: 10.1006/geno.1996.0540. [DOI] [PubMed] [Google Scholar]
  78. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  79. Sherman J. M., Pillus L. An uncertain silence. Trends Genet. 1997 Aug;13(8):308–313. doi: 10.1016/s0168-9525(97)01198-0. [DOI] [PubMed] [Google Scholar]
  80. Shinohara A., Ogawa T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. 1998 Jan 22;391(6665):404–407. doi: 10.1038/34943. [DOI] [PubMed] [Google Scholar]
  81. Shinohara M., Shita-Yamaguchi E., Buerstedde J. M., Shinagawa H., Ogawa H., Shinohara A. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics. 1997 Dec;147(4):1545–1556. doi: 10.1093/genetics/147.4.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Siede W. Cell cycle arrest in response to DNA damage: lessons from yeast. Mutat Res. 1995 Sep;337(2):73–84. doi: 10.1016/0921-8777(95)00023-d. [DOI] [PubMed] [Google Scholar]
  83. Siede W., Friedl A. A., Dianova I., Eckardt-Schupp F., Friedberg E. C. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics. 1996 Jan;142(1):91–102. doi: 10.1093/genetics/142.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sonoda E., Sasaki M. S., Buerstedde J. M., Bezzubova O., Shinohara A., Ogawa H., Takata M., Yamaguchi-Iwai Y., Takeda S. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 1998 Jan 15;17(2):598–608. doi: 10.1093/emboj/17.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Strathern J. N., Shafer B. K., McGill C. B. DNA synthesis errors associated with double-strand-break repair. Genetics. 1995 Jul;140(3):965–972. doi: 10.1093/genetics/140.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Stürzbecher H. W., Donzelmann B., Henning W., Knippschild U., Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 1996 Apr 15;15(8):1992–2002. [PMC free article] [PubMed] [Google Scholar]
  87. Sugawara N., Ivanov E. L., Fishman-Lobell J., Ray B. L., Wu X., Haber J. E. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature. 1995 Jan 5;373(6509):84–86. doi: 10.1038/373084a0. [DOI] [PubMed] [Google Scholar]
  88. Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 1997 May 1;11(9):1111–1121. doi: 10.1101/gad.11.9.1111. [DOI] [PubMed] [Google Scholar]
  89. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  90. Teo S. H., Jackson S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 1997 Aug 1;16(15):4788–4795. doi: 10.1093/emboj/16.15.4788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  92. Tran H. T., Degtyareva N. P., Koloteva N. N., Sugino A., Masumoto H., Gordenin D. A., Resnick M. A. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol. 1995 Oct;15(10):5607–5617. doi: 10.1128/mcb.15.10.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Tsukamoto Y., Kato J., Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature. 1997 Aug 28;388(6645):900–903. doi: 10.1038/42288. [DOI] [PubMed] [Google Scholar]
  94. Tsuzuki T., Fujii Y., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., Matsushiro A., Yoshimura Y., MoritaT Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6236–6240. doi: 10.1073/pnas.93.13.6236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  96. Weinert T. A., Hartwell L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. doi: 10.1126/science.3291120. [DOI] [PubMed] [Google Scholar]
  97. Wilson T. E., Grawunder U., Lieber M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature. 1997 Jul 31;388(6641):495–498. doi: 10.1038/41365. [DOI] [PubMed] [Google Scholar]
  98. Zou H., Rothstein R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell. 1997 Jul 11;90(1):87–96. doi: 10.1016/s0092-8674(00)80316-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES