Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1373–1385. doi: 10.1093/genetics/152.4.1373

Substrate requirements for a novel archaeal endonuclease that cleaves within the 5' external transcribed spacer of Sulfolobus acidocaldarius precursor rRNA.

A G Russell 1, H Ebhardt 1, P P Dennis 1
PMCID: PMC1460720  PMID: 10430568

Abstract

During ribosome biogenesis in the hyperthermophilic archaeon Sulfolobus acidocaldarius, at least three separate precursor endonucleolytic cleavages occur within the 144-nucleotide-long 5' external transcribed spacer (5' ETS) region of the rRNA operon primary transcript. The 5' ETS sequence contains three regions of very stable helical structure. One cleavage (5' to position -98) is in the single-stranded region between the 5' and the central helical domains; a second cleavage (5' to position -31) is in the single-stranded region between the central and the 3' helical domains; and a third cleavage is at the 5' ETS-16S junction (5' to position +1). The three sites share a common consensus sequence around the position of cleavage. We have used an in vitro pre-RNA processing assay to define some of the sequence and structural recognition elements necessary for the two precursor cleavages 5' to positions -98 and -31. Surprisingly, none of the three predominant helical domains are required for recognition or targeting of the cleavages, although their removal reduces the rate of cleavage site utilization. We show that the sequence AAG downward arrow (CA)UU encompassing each site contains at least some of the essential features for recognition and efficient targeting of the cleavages. Cleavage depends on the presence of a purine 5' and a uracil two nucleotides 3' to the scissile phosphodiester bond. Mutations to other bases at these critical positions are either not cleaved or cleaved very poorly. Finally, on the basis of intermediates that are produced during a processing reaction, we can conclude that the cleavages at positions 98 and 31 are not ordered in vitro.

Full Text

The Full Text of this article is available as a PDF (571.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiri K. A. Fibrillarin-like proteins occur in the domain Archaea. J Bacteriol. 1994 Apr;176(7):2124–2127. doi: 10.1128/jb.176.7.2124-2127.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balakin A. G., Smith L., Fournier M. J. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996 Sep 6;86(5):823–834. doi: 10.1016/s0092-8674(00)80156-7. [DOI] [PubMed] [Google Scholar]
  3. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  4. Chant J., Dennis P. Archaebacteria: transcription and processing of ribosomal RNA sequences in Halobacterium cutirubrum. EMBO J. 1986 May;5(5):1091–1097. doi: 10.1002/j.1460-2075.1986.tb04327.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dennis P. P., Ziesche S., Mylvaganam S. Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. J Bacteriol. 1998 Sep;180(18):4804–4813. doi: 10.1128/jb.180.18.4804-4813.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diener J. L., Moore P. B. Solution structure of a substrate for the archaeal pre-tRNA splicing endonucleases: the bulge-helix-bulge motif. Mol Cell. 1998 May;1(6):883–894. [PubMed] [Google Scholar]
  7. Dunn J. J., Studier F. W. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3296–3300. doi: 10.1073/pnas.70.12.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Durovic P., Dennis P. P. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing. Mol Microbiol. 1994 Jul;13(2):229–242. doi: 10.1111/j.1365-2958.1994.tb00418.x. [DOI] [PubMed] [Google Scholar]
  9. Durovic P., Kutay U., Schleper C., Dennis P. P. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol. 1994 Jan;176(2):514–517. doi: 10.1128/jb.176.2.514-517.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franzetti B., Sohlberg B., Zaccai G., von Gabain A. Biochemical and serological evidence for an RNase E-like activity in halophilic Archaea. J Bacteriol. 1997 Feb;179(4):1180–1185. doi: 10.1128/jb.179.4.1180-1185.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrett R. A., Dalgaard J., Larsen N., Kjems J., Mankin A. S. Archaeal rRNA operons. Trends Biochem Sci. 1991 Jan;16(1):22–26. doi: 10.1016/0968-0004(91)90011-j. [DOI] [PubMed] [Google Scholar]
  12. Gegenheimer P., Apirion D. Processing of procaryotic ribonucleic acid. Microbiol Rev. 1981 Dec;45(4):502–541. doi: 10.1128/mr.45.4.502-541.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerbi S. A. Small nucleolar RNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):845–858. doi: 10.1139/o95-092. [DOI] [PubMed] [Google Scholar]
  14. Kiss-László Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer M., Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. doi: 10.1016/s0092-8674(00)81308-2. [DOI] [PubMed] [Google Scholar]
  15. Kjems J., Jensen J., Olesen T., Garrett R. A. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis. Can J Microbiol. 1989 Jan;35(1):210–214. doi: 10.1139/m89-033. [DOI] [PubMed] [Google Scholar]
  16. Kleman-Leyer K., Armbruster D. W., Daniels C. J. Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Cell. 1997 Jun 13;89(6):839–847. doi: 10.1016/s0092-8674(00)80269-x. [DOI] [PubMed] [Google Scholar]
  17. LaGrandeur T. E., Darr S. C., Haas E. S., Pace N. R. Characterization of the RNase P RNA of Sulfolobus acidocaldarius. J Bacteriol. 1993 Aug;175(16):5043–5048. doi: 10.1128/jb.175.16.5043-5048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li H., Trotta C. R., Abelson J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science. 1998 Apr 10;280(5361):279–284. doi: 10.1126/science.280.5361.279. [DOI] [PubMed] [Google Scholar]
  19. Mackie G. A. Structure of the DNA distal to the gene for ribosomal protein S20 in Escherichia coli K12: presence of a strong terminator and an IS1 element. Nucleic Acids Res. 1986 Sep 11;14(17):6965–6981. doi: 10.1093/nar/14.17.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maxwell E. S., Fournier M. J. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. doi: 10.1146/annurev.bi.64.070195.004341. [DOI] [PubMed] [Google Scholar]
  21. Ni J., Tien A. L., Fournier M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell. 1997 May 16;89(4):565–573. doi: 10.1016/s0092-8674(00)80238-x. [DOI] [PubMed] [Google Scholar]
  22. Nicholson A. W. Structure, reactivity, and biology of double-stranded RNA. Prog Nucleic Acid Res Mol Biol. 1996;52:1–65. doi: 10.1016/s0079-6603(08)60963-0. [DOI] [PubMed] [Google Scholar]
  23. Olsen G. J., Pace N. R., Nuell M., Kaine B. P., Gupta R., Woese C. R. Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol. 1985;22(4):301–307. doi: 10.1007/BF02115685. [DOI] [PubMed] [Google Scholar]
  24. Potter S., Durovic P., Dennis P. P. Ribosomal RNA precursor processing by a eukaryotic U3 small nucleolar RNA-like molecule in an archaeon. Science. 1995 May 19;268(5213):1056–1060. doi: 10.1126/science.7538698. [DOI] [PubMed] [Google Scholar]
  25. Thompson L. D., Brandon L. D., Nieuwlandt D. T., Daniels C. J. Transfer RNA intron processing in the halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):36–42. doi: 10.1139/m89-006. [DOI] [PubMed] [Google Scholar]
  26. Thompson L. D., Brandon L. D., Nieuwlandt D. T., Daniels C. J. Transfer RNA intron processing in the halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):36–42. doi: 10.1139/m89-006. [DOI] [PubMed] [Google Scholar]
  27. Trotta C. R., Miao F., Arn E. A., Stevens S. W., Ho C. K., Rauhut R., Abelson J. N. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell. 1997 Jun 13;89(6):849–858. doi: 10.1016/s0092-8674(00)80270-6. [DOI] [PubMed] [Google Scholar]
  28. Venema J., Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1629–1650. doi: 10.1002/yea.320111607. [DOI] [PubMed] [Google Scholar]
  29. Young R. A., Steitz J. A. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3593–3597. doi: 10.1073/pnas.75.8.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhou Z., Deutscher M. P. An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J Bacteriol. 1997 Jul;179(13):4391–4395. doi: 10.1128/jb.179.13.4391-4395.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES